Relative Projectivity of the Modules~$L_p$
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 93-106

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, criteria are given for the relative projectivity of the $L_p$-spaces regarded as left Banach modules over the algebra of bounded measurable functions ($1\le p\le+\infty$) and the algebra of continuous functions vanishing at infinity ($1\le p +\infty$).
Keywords: projective module, $L_p$-space, normal measure, pseudocompact space.
@article{MZM_2022_111_1_a8,
     author = {N. T. Nemesh},
     title = {Relative {Projectivity} of the {Modules~}$L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Relative Projectivity of the Modules~$L_p$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 93
EP  - 106
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/
LA  - ru
ID  - MZM_2022_111_1_a8
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Relative Projectivity of the Modules~$L_p$
%J Matematičeskie zametki
%D 2022
%P 93-106
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/
%G ru
%F MZM_2022_111_1_a8
N. T. Nemesh. Relative Projectivity of the Modules~$L_p$. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 93-106. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/