Relative Projectivity of the Modules~$L_p$
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, criteria are given for the relative projectivity of the $L_p$-spaces regarded as left Banach modules over the algebra of bounded measurable functions ($1\le p\le+\infty$) and the algebra of continuous functions vanishing at infinity ($1\le p +\infty$).
Keywords: projective module, $L_p$-space, normal measure, pseudocompact space.
@article{MZM_2022_111_1_a8,
     author = {N. T. Nemesh},
     title = {Relative {Projectivity} of the {Modules~}$L_p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/}
}
TY  - JOUR
AU  - N. T. Nemesh
TI  - Relative Projectivity of the Modules~$L_p$
JO  - Matematičeskie zametki
PY  - 2022
SP  - 93
EP  - 106
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/
LA  - ru
ID  - MZM_2022_111_1_a8
ER  - 
%0 Journal Article
%A N. T. Nemesh
%T Relative Projectivity of the Modules~$L_p$
%J Matematičeskie zametki
%D 2022
%P 93-106
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/
%G ru
%F MZM_2022_111_1_a8
N. T. Nemesh. Relative Projectivity of the Modules~$L_p$. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 93-106. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a8/

[1] Yu. V. Selivanov, “O globalnoi gomologicheskoi razmernosti radikalnykh banakhovykh algebr stepennykh ryadov”, Matem. zametki, 104:5 (2018), 737–744 | DOI | MR | Zbl

[2] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986

[3] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR

[4] D. H. Fremlin, Measure Theory. Vol. 2. Broad Foundations., Torres Fremlin, Colchester, 2003 | MR

[5] D. H. Fremlin, Measure Theory. Vol. 4. Topological Measure Spaces, Part I, Torres Fremlin, Colchester, 2006 | MR

[6] H. G. Dales, F. K. Dashiel Jr., A. T.-M. Lau, D. Strauss, Banach Spaces of Continuous Functions as Dual Spaces, Springer, Berlin, 2016 | MR | Zbl

[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl

[8] P. Ramsden, Homological Properties of Semigroup Algebras, The University of Leeds, 2009

[9] R. S. Phillips, “On linear transformations”, Trans. Amer. Math. Soc., 48 (1940), 516–541 | DOI

[10] Pseudocompact Topological Spaces, Dev. Math., 55, eds. M. Hrusak, A. Tamariz-Mascarua, M. Tkachenko, Springer, Cham, 2018 | MR | Zbl

[11] O. Zindulka, “Residual measures in locally compact spaces”, Topology Appl., 108:3 (2000), 253–265 | DOI | Zbl

[12] J. Flachsmeyer, “Normal and category measures on topological spaces”, General Topology and its Relations to Modern Analysis and Algebra, III, Academia, Prague, 1972, 109–116 | MR