Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 24-38
Voir la notice de l'article provenant de la source Math-Net.Ru
For abstract singular equations, nonlocal problems
belonging to the class of ill-posed problems are considered.
A uniqueness criterion for solutions is established.
Keywords:
singular and degenerate equations, Euler–Poisson–Darboux equation,
nonlocal problems, uniqueness criterion.
@article{MZM_2022_111_1_a3,
author = {A. V. Glushak},
title = {Uniqueness {Criterion} for {Solutions} of {Nonlocal} {Problems} on a {Finite} {Interval} for {Abstract} {Singular} {Equations}},
journal = {Matemati\v{c}eskie zametki},
pages = {24--38},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/}
}
TY - JOUR AU - A. V. Glushak TI - Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations JO - Matematičeskie zametki PY - 2022 SP - 24 EP - 38 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/ LA - ru ID - MZM_2022_111_1_a3 ER -
A. V. Glushak. Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/