Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 24-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

For abstract singular equations, nonlocal problems belonging to the class of ill-posed problems are considered. A uniqueness criterion for solutions is established.
Keywords: singular and degenerate equations, Euler–Poisson–Darboux equation, nonlocal problems, uniqueness criterion.
@article{MZM_2022_111_1_a3,
     author = {A. V. Glushak},
     title = {Uniqueness {Criterion} for {Solutions} of {Nonlocal} {Problems} on a {Finite} {Interval} for {Abstract} {Singular} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations
JO  - Matematičeskie zametki
PY  - 2022
SP  - 24
EP  - 38
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/
LA  - ru
ID  - MZM_2022_111_1_a3
ER  - 
%0 Journal Article
%A A. V. Glushak
%T Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations
%J Matematičeskie zametki
%D 2022
%P 24-38
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/
%G ru
%F MZM_2022_111_1_a3
A. V. Glushak. Uniqueness Criterion for Solutions of Nonlocal Problems on a Finite Interval for Abstract Singular Equations. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 24-38. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a3/

[1] L. S. Pulkina, “Smeshannaya zadacha s integralnym usloviem dlya giperbolicheskogo uravneniya”, Matem. zametki, 74:3 (2003), 435–445 | DOI | MR | Zbl

[2] A. A. Zamyshlyaeva, Lineinye uravneniya sobolevskogo tipa vysokogo poryadka, Izd. tsentr YuUrGU, Chelyabinsk, 2012

[3] A. V. Glushak, “Uravneniya Eilera–Puassona–Darbu s fredgolmovym operatorom pri proizvodnykh”, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 2014, no. 36, 5–18 | Zbl

[4] A. V. Glushak, “Zavisimost reshenii uravneniya Eilera–Puassona–Darbu s fredgolmovym operatorom pri proizvodnykh ot koeffitsientov uravneniya”, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 2015, no. 38, 18–22

[5] V. K. Ivanov, I. V. Melnikova, A. I. Filinkov, Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995 | MR | Zbl

[6] I. V. Tikhonov, “O razreshimosti zadachi s nelokalnym integralnym usloviem dlya differentsialnogo uravneniya v banakhovom prostranstve”, Differents. uravneniya, 34:6 (1998), 841–843 | MR | Zbl

[7] I. V. Tikhonov, “Teoremy edinstvennosti v lineinykh nelokalnykh zadachakh dlya abstraktnykh differentsialnykh uravnenii”, Izv. RAN. Ser. matem., 67:2 (2003), 133–166 | DOI | MR | Zbl

[8] Yu. T. Silchenko, “Uravnenie parabolicheskogo tipa s nelokalnymi usloviyami”, SMFN, 17, RUDN, M., 2006, 5–10 | MR

[9] A. V. Glushak, “Nelokalnaya zadacha dlya abstraktnogo uravneniya Eilera–Puassona–Darbu”, Izv. vuzov. Matem., 2016, no. 6, 27–35 | Zbl

[10] A. V. Glushak, N. O. Gordeeva, E. N. Manaeva, I. I. Palasheva, I. M. Primak, “Non-local problem for Malmsteen abstract equation”, J. Engineering Appl. Sci., 11:4 (2016), 907–914

[11] A. V. Glushak, “Nelokalnaya zadacha dlya abstraktnogo uravneniya Besselya–Struve”, Izv. vuzov. Matem., 2019, no. 7, 29–38 | DOI | Zbl

[12] N. V. Zaitseva, “Keldysh type problem for B-hyperbolic equation with integral boundary value condition of the first kind”, Lobachevskii J. Math., 38:1 (2017), 162–169 | DOI | Zbl

[13] K. B. Sabitov, N. V. Zaitseva, “Nachalnaya zadacha dlya $B$-giperbolicheskogo uravneniya s integralnym usloviem vtorogo roda”, Differents. uravneniya, 54:1 (2018), 123–135 | MR | Zbl

[14] K. B. Sabitov, N. V. Zaitseva, “Vtoraya nachalno-granichnaya zadacha dlya $B$-giperbolicheskogo uravneniya”, Izv. vuzov. Matem., 2019, no. 10, 75–86 | DOI | Zbl

[15] N. V. Zaitseva, “Nelokalnaya kraevaya zadacha s integralnym usloviem dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Differents. uravneniya, 57:2 (2021), 224–234 | MR | Zbl

[16] N. V. Zaitseva, “Edinstvennost resheniya nelokalnoi zadachi dlya odnogo elliptiko-giperbolicheskogo uravneniya s singulyarnymi koeffitsientami”, Matem. zametki, 109:4 (2021), 544–551 | DOI | Zbl

[17] A. V. Glushak, “Kriterii edinstvennosti resheniya granichnykh zadach dlya abstraktnogo uravneniya Eilera–Puassona–Darbu na konechnom intervale”, Matem. zametki, 109:6 (2021), 821–831 | DOI | Zbl

[18] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[19] A. V. Glushak, V. I. Kononenko, S. D. Shmulevich, “Ob odnoi singulyarnoi abstraktnoi zadache Koshi”, Izv. vuzov. Matem., 1986, no. 6, 55–56 | MR | Zbl

[20] A. V. Glushak, O. A. Pokruchin, “Kriterii razreshimosti zadachi Koshi dlya abstraktnogo uravneniya Eilera–Puassona–Darbu”, Differents. uravneniya, 52:1 (2016), 41–59 | MR | Zbl

[21] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl

[22] G. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR | Zbl

[23] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2(42) (1951), 102–143 | MR | Zbl

[24] M. K. Kerimov, “Issledovaniya o nulyakh spetsialnykh funktsii Besselya i metodakh ikh vychisleniya”, Zh. vychisl. matem. i matem. fiz., 54:9 (2014), 1387–1441 | DOI | MR | Zbl

[25] A. V. Glushak, “Kriterii razreshimosti vesovoi zadachi Koshi dlya abstraktnogo uravneniya Eilera–Puassona–Darbu”, Differents. uravneniya, 54:5 (2018), 622–632 | MR | Zbl

[26] A. V. Glushak, “O razreshimosti vyrozhdayuschikhsya giperbolicheskikh differentsialnykh uravnenii s neogranichennymi operatornymi koeffitsientami”, Differents. uravneniya, 57:1 (2021), 61–75 | MR | Zbl

[27] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1961 | MR | Zbl

[28] A. V. Glushak, “A family of singular differential equations”, Lobachevskii J. Math., 41:5 (2020), 763–771 | DOI | Zbl