Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a15, author = {M. D. Surnachev}, title = {Harnack's {Inequality} of {Weak} {Type} for the {Parabolic} $p (x)${-Laplacian}}, journal = {Matemati\v{c}eskie zametki}, pages = {149--153}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a15/} }
M. D. Surnachev. Harnack's Inequality of Weak Type for the Parabolic $p (x)$-Laplacian. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 149-153. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a15/
[1] Yu. A. Alkhutov, V. V. Zhikov, Differentsialnye uravneniya i dinamicheskie sistemy, Trudy MIAN, 270, MAIK «Nauka/Interperiodika», M., 2010, 21–32 | MR | Zbl
[2] Yu. A. Alkhutov, V. V. Zhikov, Tr. sem. im. I. G. Petrovskogo, 28, Izd-vo Mosk. un-ta, M., 2011, 8–74 | Zbl
[3] Yu. A. Alkhutov, V. V. Zhikov, Matem. sb., 205:3 (2014), 3–14 | DOI | MR | Zbl
[4] Y. Wang, Nonlinear Anal., 83 (2013), 12–30 | DOI | MR | Zbl
[5] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack's inequality for Degenerate and Singular Parabolic Equations, Springer, New York, 2012 | MR
[6] T. Kuusi, “Harnack estimates for weak supersolutions to nonlinear degenerate parabolic equations”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7:4 (2008), 673–716 | MR | Zbl
[7] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl
[8] E. DiBenedetto, Degenerate Parabolic Equations, Springer, New York, 1993 | MR | Zbl
[9] E. DiBenedetto, U. Gianazza, V. Vespri, Acta Math., 200:2 (2008), 181–209 | DOI | MR | Zbl
[10] E. DiBenedetto, U. Gianazza, V. Vespri, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 17:3 (2006), 223–225 | DOI | MR | Zbl
[11] A. E. Shishkov, E. A. Evgeneva, Matem. zametki, 106:4 (2019), 622–635 | DOI | MR | Zbl
[12] A. A. Kovalevskii, Matem. zametki, 107:6 (2020), 934–939 | DOI | MR | Zbl