On Self-Correcting Logic Circuits of Unreliable Gates with at Most Two Inputs
Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 145-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: gate circuit, self-correcting, unreliable gate, Boolean function.
@article{MZM_2022_111_1_a14,
     author = {K. A. Popkov},
     title = {On {Self-Correcting} {Logic} {Circuits} of {Unreliable} {Gates} with at {Most} {Two} {Inputs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {145--148},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a14/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - On Self-Correcting Logic Circuits of Unreliable Gates with at Most Two Inputs
JO  - Matematičeskie zametki
PY  - 2022
SP  - 145
EP  - 148
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a14/
LA  - ru
ID  - MZM_2022_111_1_a14
ER  - 
%0 Journal Article
%A K. A. Popkov
%T On Self-Correcting Logic Circuits of Unreliable Gates with at Most Two Inputs
%J Matematičeskie zametki
%D 2022
%P 145-148
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a14/
%G ru
%F MZM_2022_111_1_a14
K. A. Popkov. On Self-Correcting Logic Circuits of Unreliable Gates with at Most Two Inputs. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 145-148. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a14/

[1] O. B. Lupanov, Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984

[2] G. I. Kirienko, Problemy kibernetiki, 12 (1964), 29–37 | MR

[3] G. I. Kirienko, Diskretnyi analiz, 16 (1970), 38–43 | MR | Zbl

[4] D. Ulig, Matem. zametki, 15:6 (1974), 937–944 | MR | Zbl

[5] A. V. Chashkin, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1997, no. 5, 64–66 | MR | Zbl

[6] N. I. Turdaliev, Diskret. matem., 1:3 (1989), 77–86 | MR | Zbl

[7] N. I. Turdaliev, Diskret. matem., 2:2 (1990), 150–154 | MR | Zbl

[8] N. P. Redkin, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 1996, no. 3, 3–9 | MR | Zbl

[9] N. P. Redkin, Diskret. analiz i issled. oper., 3:2 (1996), 62–79 | Zbl

[10] V. M. Krasnov, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekh., 2009, no. 5, 55–57 | MR | Zbl

[11] K. A. Popkov, Preprinty IPM im. M. V. Keldysha, 2021, 049, 18 pp. | DOI

[12] N. P. Redkin, Nadezhnost i diagnostika skhem, Izd-vo Mosk. un-ta, M., 1992

[13] D. S. Romanov, E. Yu. Romanova, Izv. vuzov Povolzh. region. Fiz.-matem. nauki, 2016, no. 2 (38), 87–102

[14] K. A. Popkov, Izv. vuzov. Povolzh. region. Fiz.-matem. nauki, 2016, no. 3 (39), 3–18

[15] D. S. Romanov, Izv. vuzov. Povolzh. region. Fiz.-matem. nauki, 2016, no. 3 (39), 56–72 | Zbl

[16] K. A. Popkov, Prikl. diskret. matem., 2017, no. 38, 66–88 | DOI | Zbl

[17] N. P. Redkin, Matem. zametki, 102:4 (2017), 624–627 | DOI | MR | Zbl

[18] D. S. Romanov, E. Yu. Romanova, Diskret. matem., 29:4 (2017), 87–105

[19] I. G. Lyubich, D. S. Romanov, Prikladnaya matematika i informatika. Vypusk 58, MAKS Press, M., 2018, 47–61

[20] K. A. Popkov, Diskret. matem., 30:3 (2018), 99–116 | DOI

[21] K. A. Popkov, Kompleksnyi analiz, matematicheskaya fizika i prilozheniya, Trudy MIAN, 301, MAIK «Nauka/Interperiodika», M., 2018, 219–224 | DOI | MR

[22] Y. Liu, Design for Test Methods to Reduce Test Set Size, PhD thesis, Univ. of Iowa, Iowa City, 2018

[23] A. I. Timoshkin, “Testable logical circuit of a binary array multiplier in nonstandard basis”, Austrian J. Techn. Natural Sci., 2018, no. 11-12, 46–49

[24] Yu. V. Borodina, Diskret. matem., 31:2 (2019), 14–19 | DOI | MR

[25] K. A. Popkov, Prikl. diskret. matem., 2019, no. 46, 38–57 | DOI | Zbl

[26] G. G. Temerbekova, D. S. Romanov, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 162:3 (2020), 359–366 | DOI

[27] K. A. Popkov, Prikl. diskret. matem., 2021, no. 51, 85–100 | DOI | Zbl

[28] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Nauka, M., 1986

[29] N. P. Redkin, Diskretnaya matematika, Fizmatlit, M., 2009