Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2022_111_1_a12, author = {S. D. Glyzin and A. Yu. Kolesov}, title = {Hyperbolicity {Criterion} for {Torus} {Endomorphisms}}, journal = {Matemati\v{c}eskie zametki}, pages = {134--139}, publisher = {mathdoc}, volume = {111}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a12/} }
S. D. Glyzin; A. Yu. Kolesov. Hyperbolicity Criterion for Torus Endomorphisms. Matematičeskie zametki, Tome 111 (2022) no. 1, pp. 134-139. http://geodesic.mathdoc.fr/item/MZM_2022_111_1_a12/
[1] D. V. Anosov, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl
[2] F. Przytycki, Studia Math., 58:3 (1976), 249–285 | DOI | Zbl
[3] R. Mañé, C. Pugh, “Stability of endomorphisms”, Dynamical Systems–Warwick 1974, Lecture Notes in Math., 468, Springer, Berlin, 1975, 175–184 | DOI
[4] K. Sakai, J. Math. Soc. Japan, 39:2 (1987), 287–300 | DOI | Zbl
[5] L. M. Lerman, K. N. Trifonov, Matem. zametki, 108:3 (2020), 474–476 | DOI | MR | Zbl
[6] A. Yu. Kolesov, N. Kh, Rozov, V. A. Sadovnichii, Differents. uravneniya, 53:4 (2017), 465–486 | MR | Zbl
[7] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, Matem. zametki, 105:2 (2019), 251–268 | DOI | MR | Zbl
[8] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, Differentsialnye uravneniya i dinamicheskie sistemy, Trudy MIAN, 308, MIAN, M., 2020, 116–134 | DOI | MR
[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, UMN, 75:2(452) (2020), 3–60 | DOI | MR | Zbl
[10] A. B. Katok, B. Khasselblat, Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999 | MR | Zbl
[11] S. Yu. Pilyugin, Prostranstva dinamicheskikh sistem, NITs “Regulyarnaya i khaoticheskaya dinamika”. In-t komp. issledovanii, M.–Izhevsk, 2008
[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, Matem. zametki, 109:4 (2021), 508–528 | DOI | Zbl