On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 899-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of time-periodic solutions of boundary layer type for a two-dimensional reaction-diffusion problem with a small parameter at the parabolic operator in the case of singularly perturbed boundary conditions of the second kind. The asymptotic approximation with respect to the small parameter for solutions with a nonmonotone boundary layer is constructed. It is shown that all such solutions are unstable. The proof of the instability of the solutions is based on the construction of an unordered pair of upper and lower solutions and on the application of a corollary of the Krein–Rutman theorem.
Keywords: singularly perturbed parabolic problems, periodic problems, nonmonotone boundary layers, asymptotic methods, differential inequalities, Krein–Rutman theorem.
Mots-clés : reaction-diffusion equations
@article{MZM_2021_110_6_a7,
     author = {N. N. Nefedov and E. I. Nikulin},
     title = {On {Unstable} {Solutions} with a {Nonmonotone} {Boundary} {Layer} in a {Two-Dimensional} {Reaction-Diffusion} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {899--910},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - E. I. Nikulin
TI  - On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem
JO  - Matematičeskie zametki
PY  - 2021
SP  - 899
EP  - 910
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/
LA  - ru
ID  - MZM_2021_110_6_a7
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A E. I. Nikulin
%T On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem
%J Matematičeskie zametki
%D 2021
%P 899-910
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/
%G ru
%F MZM_2021_110_6_a7
N. N. Nefedov; E. I. Nikulin. On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/

[1] G. Barenblatt, V. Entov, V. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer Academic Publishers, Dordrecht, 1990 | Zbl

[2] M. Burger, J.-F. Pietschmann, “Flow characteristics in a crowded transport model”, Nonlinearity, 29:11 (2016), 3528–3550 | DOI | MR | Zbl

[3] N. N. Nefedov, E. I. Nikulin, “O periodicheskikh resheniyakh s pogranichnym sloem v zadache reaktsiya diffuziya s singulyarno vozmuschennymi granichnymi usloviyami tretego roda”, Differents. uravneniya, 56:12 (2020), 1641–1650 | DOI | Zbl

[4] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i ustoichivost periodicheskikh reshenii s pogranichnym sloem v dvumernoi zadache reaktsiya-diffuziya v sluchae singulyarno vozmuschennykh granichnykh uslovii vtorogo roda”, Vestn. Mosk. un-ta. Ser. 3. Fiz., astron., 2020, no. 2, 15–20

[5] P. C. Fife, “Semilinear elliptic boundary value problems with small parameters”, Arch. Rational Mech. Anal., 52 (1973), 205–232 | DOI | MR | Zbl

[6] K. Sakamoto, “Infinitely many fine modes bifurcating from radially symmetric internal layers”, Asymptot. Anal., 42:1-2 (2005), 55–104 | MR | Zbl

[7] M. del Pino, M. Kowalczyk, J. Wei, “Resonance and Interior Layers in an Inhomogeneous Phase Transition Model”, SIAM J. Math. Anal., 38:5 (2007), 1542–1564 | MR | Zbl

[8] O. Omel'chenko, L. Recke, “Boundary layer solutions to singularly perturbed problems via the implicit function theorem”, Asymptot. Anal., 62:3-4 (2009), 207–225 | DOI | MR | Zbl

[9] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[10] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Differentsialnye uravneniya i topologiya. I, Trudy MIAN, 268, MAIK «Nauka/Interperiodika», M., 2010, 268–283 | MR | Zbl

[11] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR | Zbl

[12] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[13] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math., 247, Longman Sci. Tech., Harlow, 1991 | MR | Zbl