Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_6_a7, author = {N. N. Nefedov and E. I. Nikulin}, title = {On {Unstable} {Solutions} with a {Nonmonotone} {Boundary} {Layer} in a {Two-Dimensional} {Reaction-Diffusion} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {899--910}, publisher = {mathdoc}, volume = {110}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/} }
TY - JOUR AU - N. N. Nefedov AU - E. I. Nikulin TI - On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem JO - Matematičeskie zametki PY - 2021 SP - 899 EP - 910 VL - 110 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/ LA - ru ID - MZM_2021_110_6_a7 ER -
%0 Journal Article %A N. N. Nefedov %A E. I. Nikulin %T On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem %J Matematičeskie zametki %D 2021 %P 899-910 %V 110 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/ %G ru %F MZM_2021_110_6_a7
N. N. Nefedov; E. I. Nikulin. On Unstable Solutions with a Nonmonotone Boundary Layer in a Two-Dimensional Reaction-Diffusion Problem. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a7/
[1] G. Barenblatt, V. Entov, V. Ryzhik, Theory of Fluid Flows Through Natural Rocks, Kluwer Academic Publishers, Dordrecht, 1990 | Zbl
[2] M. Burger, J.-F. Pietschmann, “Flow characteristics in a crowded transport model”, Nonlinearity, 29:11 (2016), 3528–3550 | DOI | MR | Zbl
[3] N. N. Nefedov, E. I. Nikulin, “O periodicheskikh resheniyakh s pogranichnym sloem v zadache reaktsiya diffuziya s singulyarno vozmuschennymi granichnymi usloviyami tretego roda”, Differents. uravneniya, 56:12 (2020), 1641–1650 | DOI | Zbl
[4] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i ustoichivost periodicheskikh reshenii s pogranichnym sloem v dvumernoi zadache reaktsiya-diffuziya v sluchae singulyarno vozmuschennykh granichnykh uslovii vtorogo roda”, Vestn. Mosk. un-ta. Ser. 3. Fiz., astron., 2020, no. 2, 15–20
[5] P. C. Fife, “Semilinear elliptic boundary value problems with small parameters”, Arch. Rational Mech. Anal., 52 (1973), 205–232 | DOI | MR | Zbl
[6] K. Sakamoto, “Infinitely many fine modes bifurcating from radially symmetric internal layers”, Asymptot. Anal., 42:1-2 (2005), 55–104 | MR | Zbl
[7] M. del Pino, M. Kowalczyk, J. Wei, “Resonance and Interior Layers in an Inhomogeneous Phase Transition Model”, SIAM J. Math. Anal., 38:5 (2007), 1542–1564 | MR | Zbl
[8] O. Omel'chenko, L. Recke, “Boundary layer solutions to singularly perturbed problems via the implicit function theorem”, Asymptot. Anal., 62:3-4 (2009), 207–225 | DOI | MR | Zbl
[9] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl
[10] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Differentsialnye uravneniya i topologiya. I, Trudy MIAN, 268, MAIK «Nauka/Interperiodika», M., 2010, 268–283 | MR | Zbl
[11] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR | Zbl
[12] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl
[13] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math., 247, Longman Sci. Tech., Harlow, 1991 | MR | Zbl