The Cocompleteness of the Category $\mathbf{Tych}^G$
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 891-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cocompleteness of the category $\mathbf{Tych}^G$ is proved.
Keywords: $G$-space, $G$-Tychonoff space, topological group, uniformity, category, functor.
@article{MZM_2021_110_6_a6,
     author = {E. V. Martyanov},
     title = {The {Cocompleteness} of the {Category} $\mathbf{Tych}^G$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {891--898},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a6/}
}
TY  - JOUR
AU  - E. V. Martyanov
TI  - The Cocompleteness of the Category $\mathbf{Tych}^G$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 891
EP  - 898
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a6/
LA  - ru
ID  - MZM_2021_110_6_a6
ER  - 
%0 Journal Article
%A E. V. Martyanov
%T The Cocompleteness of the Category $\mathbf{Tych}^G$
%J Matematičeskie zametki
%D 2021
%P 891-898
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a6/
%G ru
%F MZM_2021_110_6_a6
E. V. Martyanov. The Cocompleteness of the Category $\mathbf{Tych}^G$. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 891-898. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a6/

[1] M. G. Megrelishvili, “Compactification and factorization in the category of $G$-spaces”, Categorical Topology and its Relation to Analysis, Algebra and Combinatorics, World Sci. Publ., Singapore, 1989, 220–237 | MR

[2] J. de Vries, Topological Transformation Groups 1. A Categorical Approach, Mathematisch Centrum, Amsterdam, 1975 | MR | Zbl

[3] E. V. Martyanov, “Kharakterizatsiya $\mathbb R$-faktorizuemykh $G$-prostranstv”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2017, no. 2, 7–12 | MR | Zbl

[4] E. V. Martyanov, “Ekviravnomernye faktorprostranstva”, Matem. zametki, 104:6 (2018), 872–894 | DOI | MR | Zbl

[5] J. De Vries, “On the existence of $G$-compactifications”, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 26:3 (1978), 275–280 | MR | Zbl

[6] J. R. Isbell, Uniform Spaces, Amer. Math. Soc., Providence, RI, 1964 | MR | Zbl

[7] A. V. Arhangel'skii, M. G. Tkachenko, Topological Groups and Related Structures, Atlantis Press, Paris, 2008 | MR | Zbl

[8] C. Maklein, Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004 | MR | Zbl

[9] M. I. Graev, “O svobodnykh proizvedeniyakh topologicheskikh grupp”, Izv. AN SSSR. Ser. matem., 14:4 (1950), 343–354 | MR | Zbl

[10] M. G. Megrelishvili, “Ekvivariantnye popolneniya i bikompaktnye rasshireniya”, Soobsch. AN GSSR, 115:1 (1984), 21–24 | MR | Zbl

[11] M. G. Megrelishvili, “Tikhonovskoe $G$-prostranstvo, ne obladayuschee bikompaktnym $G$-rasshireniem i $G$-linearizatsiei”, UMN, 43:2 (260) (1988), 145–146 | MR | Zbl

[12] Yu. M. Smirnov, “Compactifications, dimension and absolutes of topological transformation groups”, Proceedings of the Conference “Topology and Measure III”, Greifswald, 1982, 259–266 | Zbl

[13] W. Kulpa, “Factorization and inverse expansion theorems for uniformities”, Colloq. Math., 21 (1970), 217–227 | DOI | MR | Zbl