Chebyshev's Problem of the Moments of Nonnegative Polynomials
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 875-890.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of P. L. Chebyshev (proposed in 1883) concerning the extreme values of moments of nonnegative polynomials with weight on the interval $[-1,1]$ at a fixed zero moment, as well as this problem in a more general form. In the case of the first moment , the problem was solved by P. L. Chebyshev (1883) in the case of unit weight and by G. Szegö (1927) for an arbitrary weight. We have previously obtained a solution to Chebyshev's problem for moments of odd order, which is largely based on the monotonicity of the function $x^{2k+1}$, $k\in\mathbb{N}$. The function $x^{2k}$ is not monotone on the interval $[-1,1]$, and the problem for moments of even order becomes more difficult. The paper provides a solution to Chebyshev's problem on the largest values of moments of even order for polynomials of even degree. The problem of the smallest value of the second moment for polynomials of even degree is solved under an additional condition for the weight.
Keywords: weight functions, nonnegative polynomials on the interval, the quadrature formulas, fixed points.
Mots-clés : moments
@article{MZM_2021_110_6_a5,
     author = {V. I. Ivanov},
     title = {Chebyshev's {Problem} of the {Moments} of {Nonnegative} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {875--890},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a5/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Chebyshev's Problem of the Moments of Nonnegative Polynomials
JO  - Matematičeskie zametki
PY  - 2021
SP  - 875
EP  - 890
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a5/
LA  - ru
ID  - MZM_2021_110_6_a5
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Chebyshev's Problem of the Moments of Nonnegative Polynomials
%J Matematičeskie zametki
%D 2021
%P 875-890
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a5/
%G ru
%F MZM_2021_110_6_a5
V. I. Ivanov. Chebyshev's Problem of the Moments of Nonnegative Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 875-890. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a5/

[1] P. L. Chebyshev, “Ob otnoshenii dvukh integralov, rasprostranennykh na odni i te zhe velichiny peremennoi”, Sobranie sochinenii, T. 3, Izd-vo AN SSSR, M., 1948, 132–156

[2] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[3] L Fejér, “Über trigonometrische Polynome”, J. Reine Angew. Math., 146 (1916), 53–82 | MR

[4] V. I. Ivanov, “Ekstremalnye znacheniya momentov neotritsatelnykh mnogochlenov”, Matem. zametki, 108:4 (2020), 625–628 | DOI | Zbl

[5] V. I. Ivanov, “Zadacha Chebysheva ob ekstremalnykh znacheniyakh momentov neotritsatelnykh algebraicheskikh mnogochlenov”, Tr. IMM UrO RAN, 26, no. 4, 2020, 138–154 | DOI

[6] A. M. Ostrovskii, Reshenie uravnenii i sistem uravnenii, IL, M., 1963 | MR

[7] Yu. A. Shashkin, Nepodvizhnye tochki, Nauka, M., 1989 | MR

[8] D. V. Gorbachev, V. I. Ivanov, Lektsii o kvadraturnykh formulakh i ikh primenenii v ekstremalnykh zadachakh, Izd-vo Tulskogo gos. un-ta, Tula, 2016