Automorphisms of Nonnormal Toric Varieties
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 837-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria for the flexibility, rigidity, and almost rigidity of nonnormal affine toric varieties are obtained. For rigid and almost rigid toric varieties, automorphism groups are explicitly calculated.
Keywords: toric variety, automorphisms, flexible variety, rigid variety.
@article{MZM_2021_110_6_a2,
     author = {I. A. Boldyrev and S. A. Gaifullin},
     title = {Automorphisms of {Nonnormal} {Toric} {Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--855},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/}
}
TY  - JOUR
AU  - I. A. Boldyrev
AU  - S. A. Gaifullin
TI  - Automorphisms of Nonnormal Toric Varieties
JO  - Matematičeskie zametki
PY  - 2021
SP  - 837
EP  - 855
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/
LA  - ru
ID  - MZM_2021_110_6_a2
ER  - 
%0 Journal Article
%A I. A. Boldyrev
%A S. A. Gaifullin
%T Automorphisms of Nonnormal Toric Varieties
%J Matematičeskie zametki
%D 2021
%P 837-855
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/
%G ru
%F MZM_2021_110_6_a2
I. A. Boldyrev; S. A. Gaifullin. Automorphisms of Nonnormal Toric Varieties. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 837-855. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/

[1] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR

[2] I. V. Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Mnogoobraziya flagov, toricheskie mnogoobraziya i nadstroiki: tri primera beskonechnoi tranzitivnosti”, Matem. sb., 203:7 (2012), 3–30 | DOI | MR | Zbl

[3] A. Yu. Perepechko, “Gibkost affinnykh konusov nad poverkhnostyami del Petstso stepeni 4 i 5”, Funkts. analiz i ego pril., 47:4 (2013), 45–52 | DOI | MR | Zbl

[4] A. A. Shafarevich, “Gibkost $S$-mnogoobrazii poluprostykh grupp”, Matem. sb., 208:2 (2017), 121–148 | DOI | MR

[5] S. Gaifullin, A. Shafarevich, “Flexibility of normal affine horospherical varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330 | DOI | MR

[6] I. Arzhantsev, S. Gaifullin, “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5-6 (2017), 662–671 | DOI | MR

[7] S. Gaifullin, On Rigidity of Trinomial Hypersurfaces and Factorial Trinomial Varieties, 2019, arXiv: 1902.06136v2

[8] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006 | MR

[9] H. Flenner, M. Zaidenberg, “On the uniqueness of $\mathbb{C}^*$-actions on affine surfaces”, Affine Algebraic Geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 97–111 | MR

[10] D. Cox, J. Little, H. Schenck, Toric Varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR

[11] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR

[12] A. Takemura, R. Yoshida, “Saturation points on faces of a rational polyhedral cone”, Integer Points in Polyhedra-Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., 452, Amer. Math. Soc., Providence, RI, 2008, 147–162 | MR

[13] M. Demazure, “Sous-groupes algebraiques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3 (1970), 507–588 | DOI | MR

[14] A. Liendo, “Affine $\mathbb T$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR

[15] I. Arzhantsev, “Infinite transitivity and special automorphisms”, Ark. Mat., 56:1 (2018), 1–14 | DOI | MR

[16] E. B Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl