Automorphisms of Nonnormal Toric Varieties
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 837-855 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Criteria for the flexibility, rigidity, and almost rigidity of nonnormal affine toric varieties are obtained. For rigid and almost rigid toric varieties, automorphism groups are explicitly calculated.
Keywords: toric variety, automorphisms, flexible variety, rigid variety.
@article{MZM_2021_110_6_a2,
     author = {I. A. Boldyrev and S. A. Gaifullin},
     title = {Automorphisms of {Nonnormal} {Toric} {Varieties}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {837--855},
     year = {2021},
     volume = {110},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/}
}
TY  - JOUR
AU  - I. A. Boldyrev
AU  - S. A. Gaifullin
TI  - Automorphisms of Nonnormal Toric Varieties
JO  - Matematičeskie zametki
PY  - 2021
SP  - 837
EP  - 855
VL  - 110
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/
LA  - ru
ID  - MZM_2021_110_6_a2
ER  - 
%0 Journal Article
%A I. A. Boldyrev
%A S. A. Gaifullin
%T Automorphisms of Nonnormal Toric Varieties
%J Matematičeskie zametki
%D 2021
%P 837-855
%V 110
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/
%G ru
%F MZM_2021_110_6_a2
I. A. Boldyrev; S. A. Gaifullin. Automorphisms of Nonnormal Toric Varieties. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 837-855. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a2/

[1] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR

[2] I. V. Arzhantsev, M. G. Zaidenberg, K. G. Kuyumzhiyan, “Mnogoobraziya flagov, toricheskie mnogoobraziya i nadstroiki: tri primera beskonechnoi tranzitivnosti”, Matem. sb., 203:7 (2012), 3–30 | DOI | MR | Zbl

[3] A. Yu. Perepechko, “Gibkost affinnykh konusov nad poverkhnostyami del Petstso stepeni 4 i 5”, Funkts. analiz i ego pril., 47:4 (2013), 45–52 | DOI | MR | Zbl

[4] A. A. Shafarevich, “Gibkost $S$-mnogoobrazii poluprostykh grupp”, Matem. sb., 208:2 (2017), 121–148 | DOI | MR

[5] S. Gaifullin, A. Shafarevich, “Flexibility of normal affine horospherical varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330 | DOI | MR

[6] I. Arzhantsev, S. Gaifullin, “The automorphism group of a rigid affine variety”, Math. Nachr., 290:5-6 (2017), 662–671 | DOI | MR

[7] S. Gaifullin, On Rigidity of Trinomial Hypersurfaces and Factorial Trinomial Varieties, 2019, arXiv: 1902.06136v2

[8] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia Math. Sci., 136, Springer-Verlag, Berlin, 2006 | MR

[9] H. Flenner, M. Zaidenberg, “On the uniqueness of $\mathbb{C}^*$-actions on affine surfaces”, Affine Algebraic Geometry, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005, 97–111 | MR

[10] D. Cox, J. Little, H. Schenck, Toric Varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | MR

[11] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR

[12] A. Takemura, R. Yoshida, “Saturation points on faces of a rational polyhedral cone”, Integer Points in Polyhedra-Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., 452, Amer. Math. Soc., Providence, RI, 2008, 147–162 | MR

[13] M. Demazure, “Sous-groupes algebraiques de rang maximum du groupe de Cremona”, Ann. Sci. École Norm. Sup. (4), 3 (1970), 507–588 | DOI | MR

[14] A. Liendo, “Affine $\mathbb T$-varieties of complexity one and locally nilpotent derivations”, Transform. Groups, 15:2 (2010), 389–425 | DOI | MR

[15] I. Arzhantsev, “Infinite transitivity and special automorphisms”, Ark. Mat., 56:1 (2018), 1–14 | DOI | MR

[16] E. B Vinberg, V. L. Popov, “Teoriya invariantov”, Algebraicheskaya geometriya – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl