Almost Sharp Descriptions of Traces of Sobolev Spaces on Compacta
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 948-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Sobolev spaces, traces
Keywords: extension operators, Frostman measures.
@article{MZM_2021_110_6_a15,
     author = {A. I. Tyulenev},
     title = {Almost {Sharp} {Descriptions} of {Traces} of {Sobolev} {Spaces} on {Compacta}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {948--953},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/}
}
TY  - JOUR
AU  - A. I. Tyulenev
TI  - Almost Sharp Descriptions of Traces of Sobolev Spaces on Compacta
JO  - Matematičeskie zametki
PY  - 2021
SP  - 948
EP  - 953
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/
LA  - ru
ID  - MZM_2021_110_6_a15
ER  - 
%0 Journal Article
%A A. I. Tyulenev
%T Almost Sharp Descriptions of Traces of Sobolev Spaces on Compacta
%J Matematičeskie zametki
%D 2021
%P 948-953
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/
%G ru
%F MZM_2021_110_6_a15
A. I. Tyulenev. Almost Sharp Descriptions of Traces of Sobolev Spaces on Compacta. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 948-953. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/

[1] E. Gagliardo, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[2] V. S. Rychkov, Studia. Math., 140:2 (2000), 141–162 | DOI | MR | Zbl

[3] P. Shvartsman, Math. Nachr., 279:11 (2006), 1212–1241 | DOI | MR | Zbl

[4] P. Shvartsman, Adv. Math., 220:6 (2009), 1842–1922 | DOI | MR | Zbl

[5] L. Ihnatsyeva, A. V. Vähäkangas, J. Funct. Anal., 265:9 (2013), 1870–1915 | DOI | MR | Zbl

[6] S. K. Vodopyanov, A. I. Tyulenev, Matem. sb., 211:6 (2020), 40–94 | DOI | MR | Zbl

[7] A. I. Tyulenev, Almost Sharp Descriptions of Traces of Sobolev $W_{p}^{1}(\mathbb{R}^{n})$-Spaces to Arbitrary Compact Subsets of $\mathbb{R}^{n}$. The Case $p \in (1,n]$, 2021, arXiv: 2109.07553

[8] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996 | MR

[9] W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989 | MR | Zbl

[10] P. Hajlasz, O. Martio, J. Funct. Anal., 143 (1997), 221–246 | DOI | MR | Zbl