Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_6_a15, author = {A. I. Tyulenev}, title = {Almost {Sharp} {Descriptions} of {Traces} of {Sobolev} {Spaces} on {Compacta}}, journal = {Matemati\v{c}eskie zametki}, pages = {948--953}, publisher = {mathdoc}, volume = {110}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/} }
A. I. Tyulenev. Almost Sharp Descriptions of Traces of Sobolev Spaces on Compacta. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 948-953. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a15/
[1] E. Gagliardo, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl
[2] V. S. Rychkov, Studia. Math., 140:2 (2000), 141–162 | DOI | MR | Zbl
[3] P. Shvartsman, Math. Nachr., 279:11 (2006), 1212–1241 | DOI | MR | Zbl
[4] P. Shvartsman, Adv. Math., 220:6 (2009), 1842–1922 | DOI | MR | Zbl
[5] L. Ihnatsyeva, A. V. Vähäkangas, J. Funct. Anal., 265:9 (2013), 1870–1915 | DOI | MR | Zbl
[6] S. K. Vodopyanov, A. I. Tyulenev, Matem. sb., 211:6 (2020), 40–94 | DOI | MR | Zbl
[7] A. I. Tyulenev, Almost Sharp Descriptions of Traces of Sobolev $W_{p}^{1}(\mathbb{R}^{n})$-Spaces to Arbitrary Compact Subsets of $\mathbb{R}^{n}$. The Case $p \in (1,n]$, 2021, arXiv: 2109.07553
[8] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag, Berlin, 1996 | MR
[9] W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Springer, New York, 1989 | MR | Zbl
[10] P. Hajlasz, O. Martio, J. Funct. Anal., 143 (1997), 221–246 | DOI | MR | Zbl