Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 927-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Hamiltonian system, homoclinic trajectory.
Mots-clés : adiabatic invariant
@article{MZM_2021_110_6_a11,
     author = {S. V. Bolotin},
     title = {Crossing of the {Critical} {Energy} {Level} in {Hamiltonian} {Systems} with {Slow} {Dependence} on {Time}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {927--931},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a11/}
}
TY  - JOUR
AU  - S. V. Bolotin
TI  - Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time
JO  - Matematičeskie zametki
PY  - 2021
SP  - 927
EP  - 931
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a11/
LA  - ru
ID  - MZM_2021_110_6_a11
ER  - 
%0 Journal Article
%A S. V. Bolotin
%T Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time
%J Matematičeskie zametki
%D 2021
%P 927-931
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a11/
%G ru
%F MZM_2021_110_6_a11
S. V. Bolotin. Crossing of the Critical Energy Level in Hamiltonian Systems with Slow Dependence on Time. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 927-931. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a11/

[1] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, URSS, M., 2002

[2] A. I. Neishtadt, PMM, 51:5 (1987), 750–757 | MR | Zbl

[3] A. I. Neishtadt, A. A. Vasiliev, A. V. Artemyev, Regul. Chaotic Dyn., 18:6 (2013), 686–696 | DOI | MR | Zbl

[4] S. Bolotin, Regul. Chaotic Dyn., 24:6 (2019), 682–703 | DOI | MR | Zbl

[5] S. V. Bolotin, P. H. Rabinowitz, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 1:3 (1998), 541–570 | MR | Zbl

[6] D. V. Turaev, L. P. Shilnikov, Regul. Chaotic Dyn., 2:3-4 (1997), 126–138 | DOI | MR | Zbl

[7] R. L. Devaney, J. Differential Equations, 21:2 (1976), 431–438 | DOI | MR | Zbl

[8] Ch.-Q. Cheng, J. Yan, J. Differential Geom., 82:2 (2009), 229–277 | DOI | MR | Zbl

[9] P. Bernard, V. Kaloshin, K. Zhang, Acta Math., 217:1 (2016), 1–79 | DOI | MR | Zbl

[10] G. N. Piftankin, D. V. Treschev, UMN, 62:2 (374) (2007), 3–108 | DOI | MR | Zbl

[11] V. Gelfreich, D. Turaev, Comm. Math. Phys., 283:3 (2008), 769–794 | DOI | MR | Zbl

[12] A. Delshams, M. Gidea, P. Roldán,, Discrete Contin. Dyn. Syst., 33:3 (2013), 1089–1112 | DOI | MR | Zbl

[13] D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, Springer-Verlag, Berlin, 2010 | MR | Zbl

[14] S. Bolotin, Anal. Theory Appl., 37:1 (2021), 1–23 | DOI | MR | Zbl