The Kantorovich Problem with a Parameter and Density Constraints
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 922-926.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Kantorovich problem, measurability with respect to a parameter.
Mots-clés : optimal transport
@article{MZM_2021_110_6_a10,
     author = {V. I. Bogachev and A. N. Doledenok and I. I. Malofeev},
     title = {The {Kantorovich} {Problem} with a {Parameter} and {Density} {Constraints}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {922--926},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a10/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - A. N. Doledenok
AU  - I. I. Malofeev
TI  - The Kantorovich Problem with a Parameter and Density Constraints
JO  - Matematičeskie zametki
PY  - 2021
SP  - 922
EP  - 926
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a10/
LA  - ru
ID  - MZM_2021_110_6_a10
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A A. N. Doledenok
%A I. I. Malofeev
%T The Kantorovich Problem with a Parameter and Density Constraints
%J Matematičeskie zametki
%D 2021
%P 922-926
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a10/
%G ru
%F MZM_2021_110_6_a10
V. I. Bogachev; A. N. Doledenok; I. I. Malofeev. The Kantorovich Problem with a Parameter and Density Constraints. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 922-926. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a10/

[1] L. Ambrosio, N. Gigli, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013, 1–155 | DOI | MR

[2] V. I. Bogachev, A. V. Kolesnikov, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl

[3] C. Villani, Optimal Transport. Old and New, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009 | MR | Zbl

[4] J. Korman, R. J. McCann, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521 | DOI | MR | Zbl

[5] A. N. Doledenok, Matem. zametki, 104:1 (2018), 45–55 | DOI | MR | Zbl

[6] V. I. Bogachev, I. I. Malofeev, Dokl. AN, 487:4 (2019), 355–360 | DOI | Zbl

[7] V. I. Bogachev, I. I. Malofeev, J. Math. Anal. Appl., 486:1 (2020), 123883 | DOI | MR | Zbl

[8] V. I. Bogachev, Measure Theory, Vol. I, II, Springer-Verlag, Berlin, 2007 | MR | Zbl

[9] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math., 580, Springer-Verlag, Berlin, 1977 | DOI | MR | Zbl

[10] T. V. Bogachev, S. N. Popova, Matem. zametki, 109:2 (2021), 170–179 | DOI | MR | Zbl

[11] V. I. Bogachev, Weak Convergence of Measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[12] V. I. Bogachev, Matem. zametki, 110:3 (2021), 459–464