Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 824-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates an inverse problem for finding the order of the fractional derivative in the sense of Gerasimov–Caputo in the wave equation with an arbitrary positive self-adjoint operator $A$ having a discrete spectrum. By means of the classical Fourier method, it is proved that the value of the projection of the solution onto some eigenfunction at a fixed time uniquely restores the order of the derivative. Several examples of the operator $A$ are discussed, including a linear system of fractional differential equations, fractional Sturm–Liouville operators, and many others.
Keywords: wave equation, fractional derivative in the sense of Gerasimov–Caputo, inverse problems for determining the order of the derivative.
@article{MZM_2021_110_6_a1,
     author = {R. R. Ashurov and Yu. \`E. Fayziev},
     title = {Inverse {Problem} for {Finding} the {Order} of the {Fractional} {Derivative} in the {Wave} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {824--836},
     publisher = {mathdoc},
     volume = {110},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - Yu. È. Fayziev
TI  - Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation
JO  - Matematičeskie zametki
PY  - 2021
SP  - 824
EP  - 836
VL  - 110
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/
LA  - ru
ID  - MZM_2021_110_6_a1
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A Yu. È. Fayziev
%T Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation
%J Matematičeskie zametki
%D 2021
%P 824-836
%V 110
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/
%G ru
%F MZM_2021_110_6_a1
R. R. Ashurov; Yu. È. Fayziev. Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 824-836. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/

[1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR

[2] R. Gorenflo, A. A. Kilbas, F. Mainardi, S. V. Rogozin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Heidelberg, 2014 | MR

[3] Handbook of Fractional Calculus with Applications. Vol. 2. Fractional Differential Equations, eds. A. Kochubei, Yu. Luchko, De Gruyter, Berlin, 2019 | MR

[4] Z. Li, Y. Liu, M. Yamamoto, “Inverse problems of determining parameters of the fractional partial differential equations”, Handbook of Fractional Calculus with Applications. Vol. 2. Fractional Differential Equations, De Gruyter, Berlin, 2019, 431–442 | MR

[5] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR | Zbl

[6] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[7] A. Alsaedi, B. Ahmad, M. Kirane, B. T. Torebek, “Blowing-up solutions of the time-fractional dispersive equations”, Adv. Nonlinear Anal., 10:1 (2020), 952–971 | DOI | MR

[8] B. Ahmad, A. Alsaedi, M. Kirane, “Blowing-up solutions of distributed fractional differential systems”, Chaos Solitons Fractals, 145 (2021), Paper No. 110747 | DOI | MR

[9] M. Kirane, B. T. Torebek, Maximum Principle for Space and Time-Space Fractional Partial Differential Equations, 2020, arXiv: 2002.09314v1

[10] J. Cheng, J. Nakagawa, M. Yamamoto, T. Yamazaki, “Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation”, Inverse Problems, 25:11 (2009), Paper No. 115002 | MR

[11] Z. Li, M. Yamamoto, “Uniqueness for inverse problems of determining orders of multi-term time-fractional derivatives of diffusion equation”, Appl. Anal., 94:3 (2015), 570–579 | DOI | MR

[12] M. Yamamoto, Uniqueness in Determining the Order of Time and Spatial Fractional Derivatives, 2020, arXiv: 2006.15046v1

[13] Z. Li, Y. Luchko, M. Yamamoto, “Analyticity of solutions to a distributed order time-fractional diffusion equation and its application to an inverse problem”, Comput. Math. Appl., 73:6 (2017), 1041–1052 | DOI | MR

[14] J. Janno, “Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time-fractional diffusion equation”, Electron. J. Differential Equations, 2016 (2016), Paper No. 199 | MR

[15] R. Ashurov, S. Umarov, “Determination of the order of fractional derivative for subdiffusion equations”, Fract. Calc. Appl. Anal., 23:6 (2020), 1647–1662 | DOI | MR

[16] Sh. Alimov, R. Ashurov, “Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation”, J. Inverse Ill-Posed Probl., 28:5 (2020), 651–658 | DOI | MR

[17] R. Ashurov, Yu. Fayziev, Determination of Fractional Order and Source Term in a Fractional Subdifusion Equation, , 2021 https://www.researchgate.net/publication/354997348

[18] R. R. Ashurov, Yu. E. Fayziev, “Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation”, Lobachevskii J. Math, 42:3 (2021), 508–516 | DOI | MR

[19] R. Ashurov, R. Zunnunov, “Initial-boundary value and inverse problems for subdiffusion equation in $\mathbb R^N$”, Fract. Differ. Calc., 10:2 (2020), 291–306 | DOI | MR

[20] R. Ashurov, R. Zunnunov, Obratnaya zadacha po opredeleniyu poryadka drobnoi proizvodnoi v uravneniyakh smeshannogo tipa, 2021, arXiv: 2103.05287v1

[21] R. R. Ashurov, Inverse Problems of Determining an Order of Time-Fractional Derivative in a Wave Equation, 2021 | DOI

[22] C. Lizama, “Abstract linear fractional evolution equations”, Handbook of Fractional Calculus with Applications. Vol. 2. Fractional Differential Equations, De Gruyter, Berlin, 2019, 465–479 | MR

[23] O. Novozhenova, Biografiya i nauchnye trudy Alekseya Nikiforovicha Gerasimova. O lineinykh operatorov, uprugo-vyazkosti, elefteroze i drobnykh proizvodnykh, M., Izd-vo «Pero», 2018

[24] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain”, Nonlinear Dynam., 29:1-4 (2002), 145–155 | DOI | MR

[25] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Matem. sb., 202:4 (2011), 111–122 | DOI | MR | Zbl

[26] A. V. Pskhu, “Funktsiya Grina pervoi kraevoi zadachi dlya drobnogo diffuzionno-volnovogo uravneniya v mnogomernoi pryamougolnoi oblasti”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”, Ch. III, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 167, VINITI RAN, M., 2019, 52–61 | DOI

[27] S. Umarov, Introduction to Fractional and Pseudo-Differential Equations with Singular Symbols, Dev. Math., 41, Springer, Cham, 2015 | MR

[28] R. Ashurov, O. Muhiddinova, “Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator”, Lobachevskii J. Math., 42:3 (2021), 517–525 | DOI | MR

[29] M. Ruzhansky, N. Tokmagambetov, B. T. Torebek, “On a non-local problem for a multi-term fractional diffusion-wave equation”, Fract. Calc. Appl. Anal., 23:2 (2020), 324–355 | DOI | MR

[30] A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Based, in part, on notes left by Harry Bateman, McGraw-Hill, New York, 1953 | MR

[31] V. A. Ilin, “O razreshimosti smeshannykh zadach dlya giperbolicheskogo i parabolicheskogo uravnenii”, UMN, 15:2 (92) (1960), 97–154 | MR | Zbl