Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation
Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 824-836
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper investigates an inverse problem for finding the order of the fractional derivative in the sense of Gerasimov–Caputo in the wave equation with an arbitrary positive self-adjoint operator $A$ having a discrete spectrum. By means of the classical Fourier method, it is proved that the value of the projection of the solution onto some eigenfunction at a fixed time uniquely restores the order of the derivative. Several examples of the operator $A$ are discussed, including a linear system of fractional differential equations, fractional Sturm–Liouville operators, and many others.
Keywords:
wave equation, fractional derivative in the sense of Gerasimov–Caputo, inverse problems for determining the order of the derivative.
@article{MZM_2021_110_6_a1,
author = {R. R. Ashurov and Yu. \`E. Fayziev},
title = {Inverse {Problem} for {Finding} the {Order} of the {Fractional} {Derivative} in the {Wave} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {824--836},
publisher = {mathdoc},
volume = {110},
number = {6},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/}
}
TY - JOUR AU - R. R. Ashurov AU - Yu. È. Fayziev TI - Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation JO - Matematičeskie zametki PY - 2021 SP - 824 EP - 836 VL - 110 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/ LA - ru ID - MZM_2021_110_6_a1 ER -
R. R. Ashurov; Yu. È. Fayziev. Inverse Problem for Finding the Order of the Fractional Derivative in the Wave Equation. Matematičeskie zametki, Tome 110 (2021) no. 6, pp. 824-836. http://geodesic.mathdoc.fr/item/MZM_2021_110_6_a1/