Asymptotics of the Solution of a Variational Problem on a Large Interval
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 688-703.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational problem of minimizing the energy functional that results in a second-order nonlinear differential equation of pendulum type on a finite interval with natural boundary conditions is analyzed. It is shown that the number of solutions of the boundary-value problem depends on the length $L$ of the interval and unboundedly increases as $L\to\infty$. The solutions on which the energy minimum is realized converge as $L\to\infty$ to the solution of a variational problem in the class of periodic functions.
Keywords: nonlinear equations, variational problem, asymptotics.
Mots-clés : oscillations
@article{MZM_2021_110_5_a3,
     author = {L. A. Kalyakin},
     title = {Asymptotics of the {Solution} of a {Variational} {Problem} on a {Large} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {688--703},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a3/}
}
TY  - JOUR
AU  - L. A. Kalyakin
TI  - Asymptotics of the Solution of a Variational Problem on a Large Interval
JO  - Matematičeskie zametki
PY  - 2021
SP  - 688
EP  - 703
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a3/
LA  - ru
ID  - MZM_2021_110_5_a3
ER  - 
%0 Journal Article
%A L. A. Kalyakin
%T Asymptotics of the Solution of a Variational Problem on a Large Interval
%J Matematičeskie zametki
%D 2021
%P 688-703
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a3/
%G ru
%F MZM_2021_110_5_a3
L. A. Kalyakin. Asymptotics of the Solution of a Variational Problem on a Large Interval. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 688-703. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a3/

[1] A. P. Pyatakov, A. K. Zvezdin, “Magnitoelektricheskie materialy i multiferroiki”, UFN, 182:6 (2012), 593–620 | DOI

[2] K. Lantsosh, Variatsionnye printsipy mekhaniki, Mir, M., 1965 | MR

[3] E. M. Galeev, V. M. Tikhomirov, Optimizatsiya: teoriya, primery, zadachi, Editorial URSS, M., 2000

[4] L. A. Kalyakin, A. K. Zvezdin, Z. V. Gareeva, “Asimptoticheskii analiz modeli multiferroika”, TMF, 203:1 (2020), 26–39 | DOI | MR | Zbl

[5] Z. V. Gareeva, L. A. Kalyakin, I. R. Kayumov, A. K. Zvezdin, “Spin-pereorientatsionnye perekhody v multiferroikakh s tsikloidalnym spinovym uporyadocheniem”, Fizika metallov i metallovedenie, 121:4 (2020), 352–358 | DOI

[6] N. A. Spaldin, R. Ramesh, “Advances in magnetoelectric multiferroics”, Nat. Mater, 18:3 (2019), 203–212 | DOI

[7] N. E. Kulagin, A. F. Popkov, A. K. Zvezdin, “Prostranstvenno-modulirovannye antiferromagnitnye struktury v legkoploskostnom multiferroike”, Fizika tverdogo tela, 53:5 (2011), 912–918

[8] N. E. Kulagin, A. F. Popkov, S. V. Solovev, A. K. Zvezdin, “Indutsirovannye magnitnym polem spin-modulyatsionnye perekhody v epitaksialnykh plenkakh BiFeO3 s orientatsiei (001)”, Fizika tverdogo tela, 61:2 (2019), 248–256 | DOI

[9] L. A. Kalyakin, “Asimptotika resheniya v modeli nelineinogo ostsillyatora s estestvennymi kraevymi usloviyami”, Problemy matematicheskogo analiza, 102 (2020), 109–118 | MR | Zbl

[10] L. A. Kalyakin, “O chastote nelineinogo ostsillyatora”, Differentsialnye uravneniya, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 163, VINITI RAN, M., 2019, 15–24 | MR

[11] L. A. Kalyakin, “Funktsii Lyapunova v teoremakh obosnovaniya asimptotiki”, Matem. zametki, 98:5 (2015), 695–709 | DOI | MR | Zbl