Regular Spectral Problems of Hyperbolic Type for a System of First-Order Ordinary Differential Equations
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 796-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: spectral problems for ordinary differential equations, completeness and basis property of eigenfunctions of boundary value problems.
@article{MZM_2021_110_5_a14,
     author = {A. A. Shkalikov},
     title = {Regular {Spectral} {Problems} of {Hyperbolic} {Type} for a {System} of {First-Order} {Ordinary} {Differential} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {796--800},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a14/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - Regular Spectral Problems of Hyperbolic Type for a System of First-Order Ordinary Differential Equations
JO  - Matematičeskie zametki
PY  - 2021
SP  - 796
EP  - 800
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a14/
LA  - ru
ID  - MZM_2021_110_5_a14
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T Regular Spectral Problems of Hyperbolic Type for a System of First-Order Ordinary Differential Equations
%J Matematičeskie zametki
%D 2021
%P 796-800
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a14/
%G ru
%F MZM_2021_110_5_a14
A. A. Shkalikov. Regular Spectral Problems of Hyperbolic Type for a System of First-Order Ordinary Differential Equations. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 796-800. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a14/

[1] G. D. Birkhoff, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR | Zbl

[2] Ya. D. Tamarkin, O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917

[3] G. D. Birkhoff, R. E. Langer, Proc. Am. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI

[4] V. S. Rykhlov, Result. Math., 36:3-4 (1999), 342–353 | DOI | MR | Zbl

[5] A. M. Savchuk, A. A. Shkalikov, Matem. sb., 211:11 (2020), 129–166 | DOI | MR | Zbl

[6] A. P. Kosarev, A. A. Shkalikov, “Spektralnye asimptotiki reshenii $2\times 2$ sistem obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:6 (2021) (to appear)

[7] A. A. Shkalikov, UMN, 71:5 (431) (2016), 113–174 | DOI | MR | Zbl

[8] A. M. Savchuk, A. A. Shkalikov, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[9] A. M. Savchuk, A. A. Shkalikov, The Dirac Operator with Complex-Valued Summable Potential, arXiv: 1412.6757v1

[10] A. M. Savchuk, A. A. Shkalikov, Tr. MMO, 64, Izd-vo Mosk. un-ta, M., 2003, 159–212 | MR | Zbl

[11] L. Grafakos, Modern Fourier Analysis, Grad. Texts in Math., 250, Springer, New York, 2008 | MR

[12] A. M. Savchuk, I. V. Sadovnichaya, Spektralnyi analiz, SMFN, 66, no. 3, Rossiiskii universitet druzhby narodov, M., 2020, 373–530 | DOI

[13] A. A. Shkalikov, UMN, 76:5(461) (2021), 203–204 | DOI