Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation
Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 643-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

The representations of the groups $G_{\rm I}$$G_{\rm II}$$G_{\rm III}$$G_{\rm IV}$ that characterize symmetries of the solution space of a special doubly confluent Heun equation are described. Categories of groups whose commutator subgroup is isomorphic to the group of integers are introduced, and an algorithm for categorical characterization of such groups is described. An implementation of the algorithm for the groups $G_{\rm I}$, …, $G_{\rm IV}$ is given.
Keywords: doubly confluent Heun equation, symmetry groups of the space of solutions, extensions of groups, categories of groups, groups with commutator subgroup isomorphic to the group of integers.
@article{MZM_2021_110_5_a0,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Categories of {Symmetry} {Groups} of the {Space} of {Solutions} of the {Special} {Doubly} {Confluent} {Heun} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--657},
     publisher = {mathdoc},
     volume = {110},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation
JO  - Matematičeskie zametki
PY  - 2021
SP  - 643
EP  - 657
VL  - 110
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a0/
LA  - ru
ID  - MZM_2021_110_5_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation
%J Matematičeskie zametki
%D 2021
%P 643-657
%V 110
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a0/
%G ru
%F MZM_2021_110_5_a0
V. M. Buchstaber; S. I. Tertychnyi. Categories of Symmetry Groups of the Space of Solutions of the Special Doubly Confluent Heun Equation. Matematičeskie zametki, Tome 110 (2021) no. 5, pp. 643-657. http://geodesic.mathdoc.fr/item/MZM_2021_110_5_a0/

[1] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI | MR | Zbl

[2] S. I. Tertychniy, The Modelling of a Josephson Junction and Heun Polynomials, 2006, arXiv: math-ph/0601064

[3] V. M. Bukhshtaber, S. I.`Tertychnyi, “Semeistvo yavnykh reshenii uravneniya rezistivnoi modeli perekhoda Dzhozefsona”, TMF, 176:2 (2013), 163–188 | DOI | MR | Zbl

[4] S. I. Tertychniy, The Interrelation of the Special Double Confluent Heun Equation and the Equation of RSJ Model of Josephson Junction, 2018, arXiv: 1811.03971 | Zbl

[5] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's Diffrential Equations, ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995 | Zbl

[6] S. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002

[7] V. M. Bukhshtaber, S. I. Tertychnyi, “Avtomorfizmy prostranstva reshenii spetsialnykh dvazhdy konflyuentnykh uravnenii Goina”, Funkts. analiz i ego pril., 50:3 (2016), 12–33 | DOI | MR | Zbl

[8] V. Magnus, A. Karrass, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR | Zbl

[9] T. Panov, Y. Veryovkin, “On the commutator subgroup of a right-angled Artin group”, J. Algebra, 521 (2019), 284–298 | DOI | MR | Zbl

[10] S. Maklein, Kategorii dlya rabotayuschego matematika, Fizmatlit, M., 2004 | MR