Solvability of Independent Systems of Equations in Finitely Generated Nilpotent Groups
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 569-575.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the solvability problem for a finite independent system of equations in a finitely generated nilpotent group can effectively be reduced to a similar problem in some finite quotient group of this group. Therefore, this problem is algorithmically solvable. This strengthens a theorem of A. G. Makanin on the residual finiteness and algorithmic solvability of a regular splittable equation in a finitely generated nilpotent group.
Mots-clés : Diophantine problem
Keywords: nilpotent group, regular equation, independent system, residual finiteness.
@article{MZM_2021_110_4_a6,
     author = {V. A. Roman'kov},
     title = {Solvability of {Independent} {Systems} of {Equations} in {Finitely} {Generated} {Nilpotent} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--575},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a6/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Solvability of Independent Systems of Equations in Finitely Generated Nilpotent Groups
JO  - Matematičeskie zametki
PY  - 2021
SP  - 569
EP  - 575
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a6/
LA  - ru
ID  - MZM_2021_110_4_a6
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Solvability of Independent Systems of Equations in Finitely Generated Nilpotent Groups
%J Matematičeskie zametki
%D 2021
%P 569-575
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a6/
%G ru
%F MZM_2021_110_4_a6
V. A. Roman'kov. Solvability of Independent Systems of Equations in Finitely Generated Nilpotent Groups. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 569-575. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a6/

[1] V. Roman'kov, “Equations over groups”, Groups Complex. Cryptol., 4:2 (2012), 191–239 | MR

[2] A. L. Shmelkin, “O polnykh nilpotentnykh gruppakh”, Algebra i logika, 6:2 (1967), 111–114 | MR

[3] A. G. Makanin, “O finitnoi approksimiruemosti uravnenii v konechno porozhdennykh nilpotentnykh gruppakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1992, no. 1, 48–51 | MR | Zbl

[4] A. I. Maltsev, “O gomomorfizmakh na konechnye gruppy”, Uch. zap. Ivanovskogo ped. in-ta, 18:5 (1958), 49–60

[5] J. C. C. McKinsey, “The decision problem for some classes of sentences whithout quantifiers”, J. Symbolic Logic, 8:3 (1943), 61–76 | DOI | MR

[6] Ph. Hall, Nilpotent Groups. Notes of Lectures Given at the Canadian Mathematical Congress Summer Seminar, University of Alberta, 12–30 August, 1957, Queen Mary College, London, 1969

[7] V. A. Romankov, “O nerazreshimosti problemy endomorfnoi svodimosti v svobodnykh nilpotentnykh gruppakh i v svobodnykh koltsakh”, Algebra i logika, 16:4 (1977), 457–471 | MR

[8] V. A. Romankov, “Ob uravneniyakh v svobodnykh metabelevykh gruppakh”, Sib. matem. zhurn., 20:3 (1979), 671–673 | MR | Zbl

[9] V. A. Roman'kov, Essays in Algebra and Cryptology: Solvable Groups, Dostoevsky Omsk State University Publishing House, Omsk, 2017

[10] V. A. Roman'kov, “Diophantine questions in the class of finitely generated nilpotent groups”, J. Group Theory, 19:3 (2016), 497–514 | MR

[11] N. N. Repin, “Uravneniya s odnoi neizvestnoi v nilpotentnykh gruppakh”, Matem. zametki, 34:2 (1983), 201–206 | MR | Zbl

[12] N. N. Repin, “Problema razreshimosti uravnenii s odnoi neizvestnoi v nilpotentnykh gruppakh”, Izv. AN SSSR. Ser. matem., 48:6 (1984), 1295–1313 | MR | Zbl