On a Ramanujan Identity and Its Generalizations
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 524-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we propose a new method of derivation of number-theoretic identities which is applied to the proof of the multidimensional analogue of one of the Ramanujan identities. This method allows us to obtain new infinite series representations for the number $\pi$, of the values of the Riemann zeta function, and of the $L$-Dirichlet series at integer points.
Keywords: Ramanujan identity, hyperbolic functions, Dirichlet character modulo $4$.
@article{MZM_2021_110_4_a3,
     author = {A. T. Daniyarkhodzhaev and M. A. Korolev},
     title = {On a {Ramanujan} {Identity} and {Its} {Generalizations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {524--536},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a3/}
}
TY  - JOUR
AU  - A. T. Daniyarkhodzhaev
AU  - M. A. Korolev
TI  - On a Ramanujan Identity and Its Generalizations
JO  - Matematičeskie zametki
PY  - 2021
SP  - 524
EP  - 536
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a3/
LA  - ru
ID  - MZM_2021_110_4_a3
ER  - 
%0 Journal Article
%A A. T. Daniyarkhodzhaev
%A M. A. Korolev
%T On a Ramanujan Identity and Its Generalizations
%J Matematičeskie zametki
%D 2021
%P 524-536
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a3/
%G ru
%F MZM_2021_110_4_a3
A. T. Daniyarkhodzhaev; M. A. Korolev. On a Ramanujan Identity and Its Generalizations. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 524-536. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a3/

[1] H. Riesel, “The summation of series of hyperbolic functions”, BIT Numer. Math., 13 (1973), 97–113 | DOI

[2] B. C. Berndt, “Modular transformations and generalizations of several formulae of Ramanujan”, Rocky Mountain J. Math., 7:1 (1977), 147–189 | DOI | MR

[3] B. C. Berndt, “Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan”, J. Reine Angew. Math., 303/304 (1978), 332—365 | MR

[4] I. J. Zucker, “The summation of series of hyperbolic functions”, SIAM J. Math. Anal., 10:1 (1979), 192–206 | DOI | MR

[5] Y. Komori, K. Matsumoto, H. Tsumura, “Infinite series involving hyperbolic functions”, Lith. Math. J., 55:1 (2015), 102–118 | DOI | MR

[6] C. Xu, Some Infinite Series Involving Hyperbolic Functions, 2017, arXiv: 1707.06673v1

[7] B. C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989 | MR

[8] R. Kurant, D. Gilbert, Metody matematicheskoi fiziki, T. 1, Gostekhizdat, M.–L., 1951 | MR

[9] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 | MR | Zbl

[10] S. L. Sobolev, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 1. Osnovnye operatsii analiza, Fizmatgiz, M., 1963 | Zbl

[12] G. Beitmen, A. Erdeii, V. Magnus, F. Oberkhettinger, F. Trikomi, Tablitsy integralnykh preobrazovanii T. 1. Preobrazovaniya Fure, Laplasa, Mellina, Nauka, M., 1969 | MR | Zbl

[13] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[14] B. C. Berndt, Ramanujan's Notebooks, Part IV, Springer-Verlag, New York, 1994 | MR