Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 507-523

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the spectrum of a periodic 3D magnetic Schrödinger operator whose electric potential $V=d\mu/dx$ is the derivative of a measure is absolutely continuous provided that the distribution $d|\mu|/dx$ is $(-\Delta)$-bounded in the sense of quadratic forms with bound not exceeding some constant $C(A)\in(0,1)$, and the periodic magnetic potential $A$ satisfies certain conditions, which, in particular, hold if $A\in H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1$ or $A\in C(\mathbb R^3;\mathbb R^3)\cap H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1/2$.
Keywords: absolutely continuous spectrum, periodic Schrödinger operator.
@article{MZM_2021_110_4_a2,
     author = {L. I. Danilov},
     title = {Absolute {Continuity} of the {Spectrum} of a {Periodic} {3D} {Magnetic} {Schr\"{o}dinger} {Operator} with {Singular} {Electric} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {507--523},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
JO  - Matematičeskie zametki
PY  - 2021
SP  - 507
EP  - 523
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/
LA  - ru
ID  - MZM_2021_110_4_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
%J Matematičeskie zametki
%D 2021
%P 507-523
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/
%G ru
%F MZM_2021_110_4_a2
L. I. Danilov. Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 507-523. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/