Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_4_a2, author = {L. I. Danilov}, title = {Absolute {Continuity} of the {Spectrum} of a {Periodic} {3D} {Magnetic} {Schr\"{o}dinger} {Operator} with {Singular} {Electric} {Potential}}, journal = {Matemati\v{c}eskie zametki}, pages = {507--523}, publisher = {mathdoc}, volume = {110}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/} }
TY - JOUR AU - L. I. Danilov TI - Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential JO - Matematičeskie zametki PY - 2021 SP - 507 EP - 523 VL - 110 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/ LA - ru ID - MZM_2021_110_4_a2 ER -
%0 Journal Article %A L. I. Danilov %T Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential %J Matematičeskie zametki %D 2021 %P 507-523 %V 110 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/ %G ru %F MZM_2021_110_4_a2
L. I. Danilov. Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 507-523. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/
[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR
[2] L. I. Danilov, “O spektre periodicheskogo operatora Diraka”, TMF, 124:1 (2000), 3–17 | DOI | MR | Zbl
[3] L. I. Danilov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240 | MR
[4] Z. Shen, “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 103:2 (2002), 314–345 | DOI | MR
[5] L. I. Danilov, “O spektre periodicheskogo operatora Shredingera s potentsialom iz prostranstva Morri”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 3, 25–47
[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR
[7] L. E. Thomas, “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR
[8] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s silno podchinennym magnitnym potentsialom”, Issledovaniya po lineinym operatoram i teorii funktsii. 31, Zap. nauchn. sem. POMI, 303, POMI, SPb., 2003, 279–320 | MR | Zbl
[9] L. I. Danilov, “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izv. IMI UdGU, 2004, no. 1 (29), 49–84
[10] M. Sh. Birman, T. A. Suslina, “Absolyutnaya nepreryvnost dvumernogo periodicheskogo magnitnogo gamiltoniana s razryvnym vektornym potentsialom”, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl
[11] A. Morame, “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A, 31:37 (1998), 7593–7601 | MR
[12] R. G. Shterenberg, “Absolyutnaya nepreryvnost dvumernogo magnitnogo periodicheskogo operatora Shredingera s elektricheskim potentsialom tipa proizvodnoi ot mery”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 31, Zap. nauchn. sem. POMI, 271, POMI, SPb., 2000, 276–312 | MR | Zbl
[13] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Algebra i analiz, 13:4 (2001), 196–228 | MR | Zbl
[14] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo magnitnogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Tr. Sankt-Peterburgskogo matem. ob-va, 9 (2001), 199–233
[15] L. I. Danilov, “O spektre dvumernogo periodicheskogo operatora Shredingera”, TMF, 134:3 (2003), 447–459 | DOI | MR | Zbl
[16] L. I. Danilov, “O spektre dvumernogo obobschennogo periodicheskogo operatora Shredingera. II”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 2, 3–28
[17] A. V. Sobolev, “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR
[18] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl
[19] P. Kuchment, S. Levendorski\u{i}, “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR
[20] L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra periodicheskogo operatora Shredingera”, Matem. zametki, 73:1 (2003), 49–62 | DOI | MR | Zbl
[21] M. Tikhomirov, N. Filonov, “Absolyutnaya nepreryvnost “chetnogo” periodicheskogo operatora Shredingera s negladkimi koeffitsientami”, Algebra i analiz, 16:3 (2004), 201–210 | MR | Zbl
[22] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, Internat. Math. Res. Notices, 2001, no. 1, 1–31 | DOI | MR
[23] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A, 42:27 (2009), 275204 | DOI | MR
[24] L. I. Danilov, “Absolyutnaya nepreryvnost spektra mnogomernogo periodicheskogo magnitnogo operatora Diraka”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 61–96
[25] L. I. Danilov, On Absolute Continuity of the Spectrum of a $d$-Dimensional Periodic Magnetic Dirac Operator, 2008, arXiv: 0805.0399
[26] P. A. Tomas, “A restriction theorem for the Fourier transform”, Bull. Amer. Math. Soc., 81 (1975), 477–478 | DOI | MR
[27] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR
[28] L. I. Danilov, “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, J. Phys. A, 43:21 (2010), 215201 | DOI | MR
[29] T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra operatora Shredingera s potentsialom, sosredotochennym na periodicheskoi sisteme giperpoverkhnostei”, Algebra i analiz, 13:5 (2001), 197–240 | MR | Zbl
[30] I. V. Kachkovskii, “Teorema Steina–Tomasa dlya tora i periodicheskii operator Shredingera s singulyarnym potentsialom”, Algebra i analiz, 24:6 (2012), 124–138 | MR | Zbl
[31] I. V. Kachkovskii, Otsutstvie sobstvennykh znachenii v spektre nekotorykh operatorov Shredingera s periodicheskimi koeffitsientami, Dis. $\dots$ kand. fiz.-matem. nauk, POMI, SPb., 2013
[32] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc. (N.S.), 53:3 (2016), 343–414 | DOI | MR
[33] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[34] M. Rid, B. Saimon, Metody sovremennoi maticheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl