Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 507-523.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the spectrum of a periodic 3D magnetic Schrödinger operator whose electric potential $V=d\mu/dx$ is the derivative of a measure is absolutely continuous provided that the distribution $d|\mu|/dx$ is $(-\Delta)$-bounded in the sense of quadratic forms with bound not exceeding some constant $C(A)\in(0,1)$, and the periodic magnetic potential $A$ satisfies certain conditions, which, in particular, hold if $A\in H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1$ or $A\in C(\mathbb R^3;\mathbb R^3)\cap H^q_{\mathrm{loc}}(\mathbb R^3;\mathbb R^3)$ for some $q>1/2$.
Keywords: absolutely continuous spectrum, periodic Schrödinger operator.
@article{MZM_2021_110_4_a2,
     author = {L. I. Danilov},
     title = {Absolute {Continuity} of the {Spectrum} of a {Periodic} {3D} {Magnetic} {Schr\"{o}dinger} {Operator} with {Singular} {Electric} {Potential}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {507--523},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
JO  - Matematičeskie zametki
PY  - 2021
SP  - 507
EP  - 523
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/
LA  - ru
ID  - MZM_2021_110_4_a2
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential
%J Matematičeskie zametki
%D 2021
%P 507-523
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/
%G ru
%F MZM_2021_110_4_a2
L. I. Danilov. Absolute Continuity of the Spectrum of a Periodic 3D Magnetic Schr\"{o}dinger Operator with Singular Electric Potential. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 507-523. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a2/

[1] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[2] L. I. Danilov, “O spektre periodicheskogo operatora Diraka”, TMF, 124:1 (2000), 3–17 | DOI | MR | Zbl

[3] L. I. Danilov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Diraka”, Differents. uravneniya, 36:2 (2000), 233–240 | MR

[4] Z. Shen, “The periodic Schrödinger operators with potentials in the Morrey class”, J. Funct. Anal., 103:2 (2002), 314–345 | DOI | MR

[5] L. I. Danilov, “O spektre periodicheskogo operatora Shredingera s potentsialom iz prostranstva Morri”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2012, no. 3, 25–47

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[7] L. E. Thomas, “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR

[8] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s silno podchinennym magnitnym potentsialom”, Issledovaniya po lineinym operatoram i teorii funktsii. 31, Zap. nauchn. sem. POMI, 303, POMI, SPb., 2003, 279–320 | MR | Zbl

[9] L. I. Danilov, “Ob otsutstvii sobstvennykh znachenii v spektre dvumernykh periodicheskikh operatorov Diraka i Shredingera”, Izv. IMI UdGU, 2004, no. 1 (29), 49–84

[10] M. Sh. Birman, T. A. Suslina, “Absolyutnaya nepreryvnost dvumernogo periodicheskogo magnitnogo gamiltoniana s razryvnym vektornym potentsialom”, Algebra i analiz, 10:4 (1998), 1–36 | MR | Zbl

[11] A. Morame, “Absence of singular spectrum for a perturbation of a two-dimensional Laplace–Beltrami operator with periodic electro-magnetic potential”, J. Phys. A, 31:37 (1998), 7593–7601 | MR

[12] R. G. Shterenberg, “Absolyutnaya nepreryvnost dvumernogo magnitnogo periodicheskogo operatora Shredingera s elektricheskim potentsialom tipa proizvodnoi ot mery”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 31, Zap. nauchn. sem. POMI, 271, POMI, SPb., 2000, 276–312 | MR | Zbl

[13] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Algebra i analiz, 13:4 (2001), 196–228 | MR | Zbl

[14] R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra dvumernogo magnitnogo periodicheskogo operatora Shredingera s polozhitelnym elektricheskim potentsialom”, Tr. Sankt-Peterburgskogo matem. ob-va, 9 (2001), 199–233

[15] L. I. Danilov, “O spektre dvumernogo periodicheskogo operatora Shredingera”, TMF, 134:3 (2003), 447–459 | DOI | MR | Zbl

[16] L. I. Danilov, “O spektre dvumernogo obobschennogo periodicheskogo operatora Shredingera. II”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, no. 2, 3–28

[17] A. V. Sobolev, “Absolute continuity of the periodic magnetic Schrödinger operator”, Invent. Math., 137 (1999), 85–112 | DOI | MR

[18] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[19] P. Kuchment, S. Levendorski\u{i}, “On the structure of spectra of periodic elliptic operators”, Trans. Amer. Math. Soc., 354:2 (2002), 537–569 | DOI | MR

[20] L. I. Danilov, “Ob absolyutnoi nepreryvnosti spektra periodicheskogo operatora Shredingera”, Matem. zametki, 73:1 (2003), 49–62 | DOI | MR | Zbl

[21] M. Tikhomirov, N. Filonov, “Absolyutnaya nepreryvnost “chetnogo” periodicheskogo operatora Shredingera s negladkimi koeffitsientami”, Algebra i analiz, 16:3 (2004), 201–210 | MR | Zbl

[22] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, Internat. Math. Res. Notices, 2001, no. 1, 1–31 | DOI | MR

[23] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A, 42:27 (2009), 275204 | DOI | MR

[24] L. I. Danilov, “Absolyutnaya nepreryvnost spektra mnogomernogo periodicheskogo magnitnogo operatora Diraka”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 61–96

[25] L. I. Danilov, On Absolute Continuity of the Spectrum of a $d$-Dimensional Periodic Magnetic Dirac Operator, 2008, arXiv: 0805.0399

[26] P. A. Tomas, “A restriction theorem for the Fourier transform”, Bull. Amer. Math. Soc., 81 (1975), 477–478 | DOI | MR

[27] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR

[28] L. I. Danilov, “On absolute continuity of the spectrum of three- and four-dimensional periodic Schrödinger operators”, J. Phys. A, 43:21 (2010), 215201 | DOI | MR

[29] T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra operatora Shredingera s potentsialom, sosredotochennym na periodicheskoi sisteme giperpoverkhnostei”, Algebra i analiz, 13:5 (2001), 197–240 | MR | Zbl

[30] I. V. Kachkovskii, “Teorema Steina–Tomasa dlya tora i periodicheskii operator Shredingera s singulyarnym potentsialom”, Algebra i analiz, 24:6 (2012), 124–138 | MR | Zbl

[31] I. V. Kachkovskii, Otsutstvie sobstvennykh znachenii v spektre nekotorykh operatorov Shredingera s periodicheskimi koeffitsientami, Dis. $\dots$ kand. fiz.-matem. nauk, POMI, SPb., 2013

[32] P. Kuchment, “An overview of periodic elliptic operators”, Bull. Amer. Math. Soc. (N.S.), 53:3 (2016), 343–414 | DOI | MR

[33] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[34] M. Rid, B. Saimon, Metody sovremennoi maticheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR | Zbl