Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 635-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: algebraic coherent sheaves, nonsingular algebraic variety, projective algebraic variety, moduli for vector bundles, compactification of the moduli space, admissible pairs.
@article{MZM_2021_110_4_a13,
     author = {N. V. Timofeeva},
     title = {Locally {Free} {Resolution} of {Coherent} {Sheaves} in {Arbitrary} {Dimension}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--640},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a13/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension
JO  - Matematičeskie zametki
PY  - 2021
SP  - 635
EP  - 640
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a13/
LA  - ru
ID  - MZM_2021_110_4_a13
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension
%J Matematičeskie zametki
%D 2021
%P 635-640
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a13/
%G ru
%F MZM_2021_110_4_a13
N. V. Timofeeva. Locally Free Resolution of Coherent Sheaves in Arbitrary Dimension. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 635-640. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a13/

[1] N. V. Timofeeva, Moduli of Admissible Pairs for Arbitrary Dimension, II: Functors and Moduli, 2020, arXiv: 2012.13660

[2] N. V. Timofeeva, Matem. sb., 210:5 (2019), 109–134 | DOI | MR

[3] M. Lübke, A. Teleman, The Kobayashi–Hitchin Correspondence, World Sci. Publ., River Edge, NJ, 1995 | MR

[4] J. Li, J. Differential Geom., 37:2 (1993), 417–466 | MR

[5] M. Maruyama, J. Math. Kyoto Univ., 17:1 (1977), 91–126 | MR

[6] M. Maruyama, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | MR

[7] S. K. Donaldson, “Compactification and completion of Yang–Mills moduli spaces”, Differential Geometry (Peñiscola, 1988), Lecture Notes in Math., 1410, Springer, Berlin, 1989, 145–160 | DOI | MR

[8] V. Baranovsky, Int. Math. Res. Not. IMRN, 2015:23, 12678–12712 | MR

[9] U. Bruzzo, D. Markushevich, A. Tikhomirov, Math. Z., 275:3-4 (2013), 1073–1093 | DOI | MR

[10] P. M. N. Feehan, J. Differential Geom., 42:3 (1995), 465–553 | MR

[11] D. Markushevich, A. Tikhomirov, G. Trautmann, Cent. Eur. J. Math., 10:4 (2012), 1331–1355 | DOI | MR

[12] N. V. Timofeeva, Moduli of Admissible Pairs for Arbitrary Dimension, I: Resolution, 2020, arXiv: 2012.11194

[13] N. V. Timofeeva, Matem. zametki, 90:1 (2011), 143–150 | DOI | MR

[14] N. V. Timofeeva, Matem. sb., 202:3 (2011), 107–160 | DOI | MR | Zbl

[15] N. V. Timofeeva, Matem. sb., 199:7 (2008), 103–122 | DOI | MR

[16] N. V. Timofeeva, Matem. sb., 200:3 (2009), 95–118 | DOI | MR | Zbl

[17] N. V. Timofeeva, Sib. elektron. matem. izv., 12 (2015), 577–591 | DOI