Feedback and Impulse Behavior of Differential-Algebraic Equations
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 610-629.

Voir la notice de l'article provenant de la source Math-Net.Ru

A controlled linear system of differential-algebraic equations with infinitely differentiable coefficients is considered. An arbitrarily high unsolvability index and a variable rank of matrix coefficients are allowed. Sufficient existence conditions are obtained and methods are proposed for finding a feedback control such that the solution of a closed system exists in the class of generalized function (distribution)s of Sobolev–Schwartz type and does not contain singular terms. This control is constructed as a linear combination of the components of the system's state and its derivatives.
Keywords: differential-algebraic equations, generalized solution, feedback, exclusion of impulse terms.
@article{MZM_2021_110_4_a11,
     author = {A. A. Shcheglova},
     title = {Feedback and {Impulse} {Behavior} of {Differential-Algebraic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {610--629},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a11/}
}
TY  - JOUR
AU  - A. A. Shcheglova
TI  - Feedback and Impulse Behavior of Differential-Algebraic Equations
JO  - Matematičeskie zametki
PY  - 2021
SP  - 610
EP  - 629
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a11/
LA  - ru
ID  - MZM_2021_110_4_a11
ER  - 
%0 Journal Article
%A A. A. Shcheglova
%T Feedback and Impulse Behavior of Differential-Algebraic Equations
%J Matematičeskie zametki
%D 2021
%P 610-629
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a11/
%G ru
%F MZM_2021_110_4_a11
A. A. Shcheglova. Feedback and Impulse Behavior of Differential-Algebraic Equations. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 610-629. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a11/

[1] D. Cobb, “Controllability, observability, and duality in singular systems”, IEEE Trans. Automat. Control, 29:12 (1984), 1076–1082 | DOI | MR

[2] G. C. Verghese, B. Levy, T. Kailath, “A generalized state-space for singular systems”, IEEE Trans. Automat. Control, 26:4 (1981), 811–831 | DOI | MR

[3] L. Dai, Singular Control System, Lect. Notes Control Inf. Sci., 118, Springer-Verlag, Berlin, 1989 | MR

[4] C.-J. Wang, “State feedback impulse Elimination of linear time-varying singular systems”, Automatica J. IFAC, 32:1 (1996), 133–136 | DOI | MR

[5] D. Cobb, “State feedback impulse elimination for singular systems over a Hermite domain”, SIAM J. Control Optim., 44:6 (2006), 2189–2209 | DOI | MR

[6] A. A. Scheglova, “Ob isklyuchenii impulsnykh slagaemykh v reshenii differentsialno-algebraicheskikh uravnenii s pomoschyu obratnoi svyazi”, Differents. uravneniya, 57:1 (2021), 43–60 | DOI

[7] A. A. Scheglova, “Cuschestvovanie resheniya nachalnoi zadachi dlya vyrozhdennoi lineinoi gibridnoi sistemy s peremennymi koeffitsientami”, Izv. vuzov. Matem., 2010, no. 9, 57–70 | MR

[8] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[9] A. A. Scheglova, “Ob upravlyaemosti differentsialno-algebraicheskikh uravnenii v klasse impulsnykh vozdeistvii”, Sib. matem. zhurn., 59:1 (2018), 210–224 | DOI

[10] A. D. Kononov, A. A. Scheglova, “Ustoichivost intervalnogo semeistva differentsialno-algebraicheskikh uravnenii”, Izv. RAN. Teoriya i sistemy upravleniya, 2020, no. 6, 15–31

[11] V. F. Chistyakov, A. A. Scheglova, Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003 | MR

[12] V. A. Trenogin, Funktsionalnyi analiz, Nauka, M., 1993 | MR

[13] Yu. E. Boyarintsev, Metody resheniya vyrozhdennykh sistem obyknovennykh differentsialnykh uravnenii, Nauka, Novosibirsk, 1988 | MR

[14] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, PA, 1996 | MR