Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 498-506.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the properties of the primitives of Legendre polynomials on the interval $[0;1]$ are studied. It is proved that the Legendre polynomials form an “almost” orthogonal system. Namely, for a fixed order of the primitive, only finitely many of these polynomials can be nonorthogonal. These properties underly the relationship between the spectral problems for differential operators in $L_2[0;1]$ and the spectral properties of generalized Jacobi matrices.
Keywords: primitives of Legendre polynomials, least and greatest eigenvalue
Mots-clés : Jacobi matrix.
@article{MZM_2021_110_4_a1,
     author = {T. A. Garmanova and I. A. Sheipak},
     title = {Orthogonality {Relations} for the {Primitives} of {Legendre} {Polynomials} and {Their} {Applications} to {Some} {Spectral} {Problems} for {Differential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {498--506},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a1/}
}
TY  - JOUR
AU  - T. A. Garmanova
AU  - I. A. Sheipak
TI  - Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators
JO  - Matematičeskie zametki
PY  - 2021
SP  - 498
EP  - 506
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a1/
LA  - ru
ID  - MZM_2021_110_4_a1
ER  - 
%0 Journal Article
%A T. A. Garmanova
%A I. A. Sheipak
%T Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators
%J Matematičeskie zametki
%D 2021
%P 498-506
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a1/
%G ru
%F MZM_2021_110_4_a1
T. A. Garmanova; I. A. Sheipak. Orthogonality Relations for the Primitives of Legendre Polynomials and Their Applications to Some Spectral Problems for Differential Operators. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 498-506. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a1/

[1] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl

[2] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR

[3] G. A. Kalyabin, “Tochnye otsenki dlya proizvodnykh funktsii iz klassov Soboleva $\mathring W_2^r(-1,1)$”, Teoriya funktsii i differentsialnye uravneniya, Trudy MIAN, 269, MAIK «Nauka/Interperiodika», M., 2010, 143–149 | MR | Zbl

[4] E. V. Mukoseeva, A. I. Nazarov, “O simmetrii ekstremali v nekotorykh teoremakh vlozheniya”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 44, Zap. nauchn. sem. POMI, 425, POMI, SPb., 2014, 35–45

[5] K. V. Kholshevnikov, V. Sh. Shaidulin, “O svoistvakh integralov ot mnogochlena Lezhandra”, Vestn. SPbGU. Ser. 1, 1 (59):1 (2014), 55–67 | MR

[6] T. A. Garmanova, I. A. Sheipak, “O tochnykh otsenkakh proizvodnykh chetnogo poryadka v prostranstvakh Soboleva”, Funkts. analiz i ego pril., 55:1 (2021), 43–55 | DOI | MR

[7] T. A. Garmanova, “Otsenki proizvodnykh v prostranstvakh Soboleva v terminakh gipergeometricheskikh funktsii”, Matem. zametki, 109:4 (2021), 500–507 | DOI

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. V 3 t. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR | Zbl

[9] A. Böttcher, H. Widom, “From Toeplitz eigenvalues through Green's kernels to higher-order Wirtinger–Sobolev inequalities”, The Extended Field of Operator Theory, Oper. Theory Adv. Appl., 171, Birkhäuser, Basel, 2007, 73–87 | MR

[10] A. I. Nazarov, A. N. Petrova, “O tochnykh konstantakh v nekotorykh teoremakh vlozheniya vysokogo poryadka”, Vestn. SPbGU. Ser. 1, 2008, no. 4, 16–20 | MR

[11] Yu. P. Petrova, “Spektralnye asimptotiki dlya zadach s integralnymi ogranicheniyami”, Matem. zametki, 102:3 (2017), 405–414 | DOI | MR

[12] N. I. Akhiezer, I. M. Glazman, Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl