Approximation Properties of the Vall\'ee-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 483-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the approximation of functions, continuous on the semiaxis $[0,\infty)$ and for which the derivatives $f^{(\nu)}(0)$, $\nu=0,\dots,r-1$ exist at the point $x=0$, by the Vallée-Poussin means of partial sums of a special series in Laguerre polynomials.
Mots-clés : Laguerre polynomials
Keywords: special series, approximation properties, Vallée-Poussin means.
@article{MZM_2021_110_4_a0,
     author = {R. M. Gadzhimirzaev and T. N. Shakh-Emirov},
     title = {Approximation {Properties} of the {Vall\'ee-Poussin} {Means} of {Partial} {Sums} of a {Special} {Series} in {Laguerre} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--497},
     publisher = {mathdoc},
     volume = {110},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
AU  - T. N. Shakh-Emirov
TI  - Approximation Properties of the Vall\'ee-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials
JO  - Matematičeskie zametki
PY  - 2021
SP  - 483
EP  - 497
VL  - 110
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/
LA  - ru
ID  - MZM_2021_110_4_a0
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%A T. N. Shakh-Emirov
%T Approximation Properties of the Vall\'ee-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials
%J Matematičeskie zametki
%D 2021
%P 483-497
%V 110
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/
%G ru
%F MZM_2021_110_4_a0
R. M. Gadzhimirzaev; T. N. Shakh-Emirov. Approximation Properties of the Vall\'ee-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/

[1] I. I. Sharapudinov, “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 58:2 (2017), 440–467 | DOI

[2] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[3] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87:3 (1965), 695–708 | DOI | MR

[4] B. Muckenhoupt, “Mean convergence of Hermite and Laguerre series. II”, Trans. Amer. Math. Soc., 147:2 (1970), 433–460 | DOI | MR

[5] I. I. Sharapudinov, Mnogochleny, ortogonalnye na setkakh, Izd-vo Dagestanskogo gos. ped. un-ta, Makhachkala, 1997

[6] E. L. Poiani, “Mean Cesàro summability of Laguerre and Hermite series”, Trans. Amer. Math. Soc., 173 (1972), 1–31 | MR