Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials
Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 483-497
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of the approximation of functions, continuous on the semiaxis $[0,\infty)$ and for which the derivatives $f^{(\nu)}(0)$, $\nu=0,\dots,r-1$ exist at the point $x=0$, by the Vallée-Poussin means of partial sums of a special series in Laguerre polynomials.
Mots-clés :
Laguerre polynomials, Vallée-Poussin means.
Keywords: special series, approximation properties
Keywords: special series, approximation properties
@article{MZM_2021_110_4_a0,
author = {R. M. Gadzhimirzaev and T. N. Shakh-Emirov},
title = {Approximation {Properties} of the {Vall\'ee-Poussin} {Means} of {Partial} {Sums} of a {Special} {Series} in {Laguerre} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {483--497},
year = {2021},
volume = {110},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/}
}
TY - JOUR AU - R. M. Gadzhimirzaev AU - T. N. Shakh-Emirov TI - Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials JO - Matematičeskie zametki PY - 2021 SP - 483 EP - 497 VL - 110 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/ LA - ru ID - MZM_2021_110_4_a0 ER -
%0 Journal Article %A R. M. Gadzhimirzaev %A T. N. Shakh-Emirov %T Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials %J Matematičeskie zametki %D 2021 %P 483-497 %V 110 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/ %G ru %F MZM_2021_110_4_a0
R. M. Gadzhimirzaev; T. N. Shakh-Emirov. Approximation Properties of the Vallée-Poussin Means of Partial Sums of a Special Series in Laguerre Polynomials. Matematičeskie zametki, Tome 110 (2021) no. 4, pp. 483-497. http://geodesic.mathdoc.fr/item/MZM_2021_110_4_a0/
[1] I. I. Sharapudinov, “Spetsialnye ryady po polinomam Lagerra i ikh approksimativnye svoistva”, Sib. matem. zhurn., 58:2 (2017), 440–467 | DOI
[2] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl
[3] R. Askey, S. Wainger, “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87:3 (1965), 695–708 | DOI | MR
[4] B. Muckenhoupt, “Mean convergence of Hermite and Laguerre series. II”, Trans. Amer. Math. Soc., 147:2 (1970), 433–460 | DOI | MR
[5] I. I. Sharapudinov, Mnogochleny, ortogonalnye na setkakh, Izd-vo Dagestanskogo gos. ped. un-ta, Makhachkala, 1997
[6] E. L. Poiani, “Mean Cesàro summability of Laguerre and Hermite series”, Trans. Amer. Math. Soc., 173 (1972), 1–31 | MR