Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in~$L_2$
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 450-458.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact constants in Jackson–Stechkin type inequalities are found for the smoothness characteristics $\Lambda_m (f)$, $ m\in\mathbb N$, determined by averaging the norm of finite differences of $m$th order of functions $ f \in L_2$. A solution is given of the extremal problem of finding the supremum for best joint polynomial approximations of functions and their successive derivatives on some classes of functions from $L_2$ whose averaged norms of finite differences are bounded above by $1$.
Keywords: best approximations, upper bound, smoothness characteristic, finite differences.
@article{MZM_2021_110_3_a9,
     author = {M. Sh. Shabozov},
     title = {Inequalities between {Best} {Polynomial} {Approximants} and {Smoothness} {Characteristics} of {Functions} in~$L_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {450--458},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a9/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in~$L_2$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 450
EP  - 458
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a9/
LA  - ru
ID  - MZM_2021_110_3_a9
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in~$L_2$
%J Matematičeskie zametki
%D 2021
%P 450-458
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a9/
%G ru
%F MZM_2021_110_3_a9
M. Sh. Shabozov. Inequalities between Best Polynomial Approximants and Smoothness Characteristics of Functions in~$L_2$. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 450-458. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a9/

[1] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer, New York, 1997 | MR

[2] B. Sendov, V. Popov, Usrednennye moduli gladkosti, M., Mir, 1988 | MR

[3] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[4] N. P. Pustovoitov, “Otsenka nailuchshikh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami cherez usrednennye raznosti i mnogomernaya teorema Dzheksona”, Matem. sb., 188:10 (1997), 95–108 | DOI | MR | Zbl

[5] M. Sh. Shabozov, S. B. Vakarchuk, V. I. Zabutnaya, “Tochnye neravenstva tipa Dzheksona-Stechkina dlya periodicheskikh funktsii v $L_2$ i znacheniya poperechnikov klassov funktsii”, Dokl. AN, 451:6 (2013), 625–628 | MR

[6] V. A. Abilov, F. V. Abilova, “Nekotorye voprosy priblizheniya $2\pi$-periodicheskikh funktsii summami Fure v prostranstve $L_2(2\pi)$”, Matem. zametki, 76:6 (2004), 803–811 | DOI | MR | Zbl

[7] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva tipa Dzheksona–Stechkina dlya spetsialnykh modulei nepreryvnosti i poperechniki funktsionalnykh klassov v prostranstve $L_2$”, Matem. zametki, 92:4 (2012), 497–514 | DOI | MR | Zbl

[8] M. Sh. Shabozov, K. Tukhliev, “Nailuchshie polinomialnye priblizheniya i poperechniki nekotorykh funktsionalnykh klassov v $L_{2}$”, Matem. zametki, 94:6 (2013), 908–917 | DOI | MR | Zbl

[9] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_2$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | DOI | MR

[10] S. B. Vakarchuk, “Neravenstva tipa Dzheksona s obobschennym modulem nepreryvnosti i tochnye znacheniya $n$-poperechnikov klassov $(\varphi,\beta)$-differentsiruemykh funktsii v $L_2$. I”, Ukr. matem. zhurn, 68:6 (2016), 723–745 | MR

[11] M. Sh. Shabozov, S. B. Vakarchuk, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami i tochnykh znacheniyakh poperechnikov funktsionalnykh klassov v $L_2$”, Anal. Math., 38:6 (2012), 147–159 | MR