Mixed Problem for a General 1D Wave Equation with Characteristic Second Derivatives in a Nonstationary Boundary Mode
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 345-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a modified method of characteristics to derive an explicit formula for the unique stable classical solution of a linear mixed problem for a general one-dimensional wave equation in the first quarter plane with time-varying characteristic second derivatives in the boundary condition. We find a criterion for the Hadamard well-posedness of this problem in the form of conditions on the right-hand side of the equation and the initial and boundary data ensuring the unique and stable global solvability of the problem in the set of classical solutions. The well-posedness criterion includes necessary and sufficient smoothness conditions on the initial data of the problem and conditions for the consistency of the boundary condition with the initial conditions and the equation itself. The data smoothness conditions ensure that the solution is twice continuously differentiable, while the consistency conditions are needed for the solution to be smooth across the critical characteristic of the equation.
Keywords: characteristic second derivative, classical solution, well-posedness criterion, smoothness condition, consistency condition.
@article{MZM_2021_110_3_a2,
     author = {F. E. Lomovtsev and K. A. Spesivtseva},
     title = {Mixed {Problem} for a {General} {1D} {Wave} {Equation} with {Characteristic} {Second} {Derivatives} in a {Nonstationary} {Boundary} {Mode}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {345--357},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a2/}
}
TY  - JOUR
AU  - F. E. Lomovtsev
AU  - K. A. Spesivtseva
TI  - Mixed Problem for a General 1D Wave Equation with Characteristic Second Derivatives in a Nonstationary Boundary Mode
JO  - Matematičeskie zametki
PY  - 2021
SP  - 345
EP  - 357
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a2/
LA  - ru
ID  - MZM_2021_110_3_a2
ER  - 
%0 Journal Article
%A F. E. Lomovtsev
%A K. A. Spesivtseva
%T Mixed Problem for a General 1D Wave Equation with Characteristic Second Derivatives in a Nonstationary Boundary Mode
%J Matematičeskie zametki
%D 2021
%P 345-357
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a2/
%G ru
%F MZM_2021_110_3_a2
F. E. Lomovtsev; K. A. Spesivtseva. Mixed Problem for a General 1D Wave Equation with Characteristic Second Derivatives in a Nonstationary Boundary Mode. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 345-357. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a2/

[1] F. E. Lomovtsev, V. V. Sholomitskaya, “Smeshannaya zadacha dlya neodnorodnogo uravneniya kolebanii poluogranichennoi struny pri nestatsionarnykh pervoi kosoi i vtoroi proizvodnoi po $x$ v granichnom uslovii”, Vestn. BGU Ser. fiz.-mat. nauk, 2016, no. 2, 95–102

[2] V. V. Lysenko, F. E. Lomovtsev, “Nekharakteristicheskaya smeshannaya zadacha dlya odnomernogo volnovogo uravneniya v pervoi chetverti ploskosti pri nestatsionarnykh granichnykh vtorykh proizvodnykh”, Vestn. Vitebskogo gos. un-ta, 2019, no. 3, 5–17

[3] K. A. Spesivtseva, F. E. Lomovtsev, “Nachalno-granichnaya zadacha dlya obschego odnomernogo volnovogo uravneniya pri nestatsionarnom granichnom uslovii s kharakteristicheskimi vtorymi chastnymi proizvodnymi”, Materialy Mezhdunarodnoi nauchnoi konferentsii “Eruginskie chteniya-2018”, Ch. 2, IM NAN Belarusi, Minsk, 2018, 34–36

[4] S. N. Baranovskaya, N. I. Yurchuk, “Smeshannaya zadacha dlya uravneniya kolebaniya struny s zavisyaschei ot vremeni kosoi proizvodnoi v kraevom uslovii”, Differents. uravneniya, 45:8 (2009), 1188–1191 | MR

[5] F. E. Lomovtsev, “Neobkhodimye i dostatochnye usloviya vynuzhdennykh kolebanii poluogranichennoi struny s pervoi kharakteristicheskoi kosoi proizvodnoi v nestatsionarnom granichnom uslovii”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2016, no. 1, 21–27

[6] F. E. Lomovtsev, “Reshenie bez prodolzheniya dannykh smeshannoi zadachi dlya neodnorodnogo uravneniya kolebanii struny pri granichnykh kosykh proizvodnykh”, Differents. uravneniya, 52:8 (2016), 1128–1132 | MR

[7] E. N. Novikov, Smeshannye zadachi dlya uravneniya vynuzhdennykh kolebanii ogranichennoi struny pri nestatsionarnykh granichnykh usloviyakh s pervoi i vtorymi kosymi proizvodnymi, Avtoreferat dis. $\dots$ kand. fiz.-matem. nauk, IM NAN Belarusi, Minsk, 2017

[8] F. E. Lomovtsev, “Metod korrektirovki probnykh reshenii obschego volnovogo uravneniya v pervoi chetverti ploskosti dlya minimalnoi gladkosti ego pravoi chasti”, Zhurn. Belorusskogo gos. un-ta. Matem. Inform., 2017, no. 3, 38–52

[9] E. I. Moiseev, F. E. Lomovtsev, E. N. Novikov, “Neodnorodnoe faktorizovannoe giperbolicheskoe uravnenie vtorogo poryadka v chetverti ploskosti pri polunestatsionarnoi faktorizovannoi vtoroi kosoi proizvodnoi v granichnom uslovii”, Dokl. AN, 459:5 (2014), 544–549 | MR

[10] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 2004 | MR