On Sequential Properties of Spaces of Measures
Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 459-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: space of measures, weak topology, sequential continuity.
@article{MZM_2021_110_3_a10,
     author = {V. I. Bogachev},
     title = {On {Sequential} {Properties} of {Spaces} of {Measures}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {459--464},
     publisher = {mathdoc},
     volume = {110},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a10/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - On Sequential Properties of Spaces of Measures
JO  - Matematičeskie zametki
PY  - 2021
SP  - 459
EP  - 464
VL  - 110
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a10/
LA  - ru
ID  - MZM_2021_110_3_a10
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T On Sequential Properties of Spaces of Measures
%J Matematičeskie zametki
%D 2021
%P 459-464
%V 110
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a10/
%G ru
%F MZM_2021_110_3_a10
V. I. Bogachev. On Sequential Properties of Spaces of Measures. Matematičeskie zametki, Tome 110 (2021) no. 3, pp. 459-464. http://geodesic.mathdoc.fr/item/MZM_2021_110_3_a10/

[1] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989 | MR

[2] N. Noble, Trans. Amer. Math. Soc., 149 (1970), 187–198 | DOI | MR

[3] V. I. Bogachev, Measure Theory, V. 1, 2, Springer-Verlag, Berlin, 2007 | MR

[4] V. I. Bogachev, Weak Convergence of Measures, Amer. Math. Soc., Providence, RI, 2018 | MR

[5] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer, New York, 2017 | MR

[6] R. M. Dudley, Proc. Amer. Math. Soc., 27 (1971), 531–534 | DOI | MR

[7] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, URSS, M., 2015 | MR

[8] J. G. Ceder, Pacific J. Math., 11 (1961), 105–125 | DOI | MR

[9] C. J. R. Borges, Pacific J. Math., 17 (1966), 1–16 | DOI | MR

[10] G. Gruenhage, Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 423–501 | MR

[11] S. A. Shkarin, Russ. J. Math. Phys., 6:4 (1999), 435–460 | MR

[12] V. V. Kozlov, Matem. zametki, 108:3 (2020), 360–365 | DOI | MR

[13] V. I. Bogachev, UMN, 75:3 (453) (2020), 3–36 | DOI | MR

[14] V. I. Bogachev, A. V. Kolesnikov, UMN, 67:5 (407) (2012), 3–110 | DOI | MR | Zbl

[15] A. N. Doledenok, Matem. zametki, 104:1 (2018), 45–55 | DOI | MR

[16] D. B. Bukin, E. P. Krugova, “On Triangular Mappings of Gaussian Measures”, Math. Notes, 106:5 (2019), 843–845 | DOI | MR