Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 266-281.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Jackson–Stechkin type inequalities for the smoothness characteristic $\Lambda_m(f)$, $m\in\mathbb N$, we find exact constants determined by averaging the norms of finite differences of $m$th order of a function $f\in B_2$. We solve the problem of best joint approximation for a certain class of functions from $B_2^{(r)}$, $r\in\mathbb Z_+$ whose smoothness characteristic $\Lambda_m(f)$ averaged with a given weight is bounded above by the majorant $\Phi$. The exact values of $n$-widths of some classes of functions are also calculated.
Keywords: sharp inequalities, best joint approximation, smoothness characteristics, $n$-widths.
Mots-clés : exact constants
@article{MZM_2021_110_2_a8,
     author = {M. Sh. Shabozov and E. U. Kadamshoev},
     title = {Sharp {Inequalities} between the {Best} {Root-Mean-Square} {Approximations} of {Analytic} {Functions} in the {Disk} and {Some} {Smoothness} {Characteristics} in the {Bergman} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {266--281},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - E. U. Kadamshoev
TI  - Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space
JO  - Matematičeskie zametki
PY  - 2021
SP  - 266
EP  - 281
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/
LA  - ru
ID  - MZM_2021_110_2_a8
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A E. U. Kadamshoev
%T Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space
%J Matematičeskie zametki
%D 2021
%P 266-281
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/
%G ru
%F MZM_2021_110_2_a8
M. Sh. Shabozov; E. U. Kadamshoev. Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 266-281. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/

[1] D. Jackson, Uber die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebenen Ordnung, Dissertation, Göttingen, 1911

[2] E. S. Quade, “Trigonometric approximation in the mean”, Duke Math. J., 3 (1937), 529–543 | DOI | MR

[3] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl

[4] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl

[5] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya periodicheskikh funktsii v rabotakh S. B. Stechkina i ikh razvitie”, Tr. IMM UrO RAN, 16, no. 4, 2010, 5–17

[6] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0

1$”, Matem. sb., 98 (140):3 (11) (1975), 395–415 | MR | Zbl

[7] E. A. Storozhenko, P. Osvald, “Teorema Dzheksona v prostranstvakh $L^p(R^k)$, $0

1$”, Sib. matem. zhurn., 19:4 (1978), 888–901 | MR | Zbl

[8] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya v metrike $L_p$ dlya $0

1$”, Matem. zametki, 18:5 (1975), 641–658 | MR | Zbl

[9] N. P. Korneichuk, “Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | MR | Zbl

[10] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl

[11] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[12] A. A. Ligun, “O tochnykh konstantakh priblizheniya differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 14:1 (1973), 21–30 | MR | Zbl

[13] N. I. Chernykh, “Neravenstvo Dzheksona v $L_p(0,2\pi)$ $(1\le p2)$ s tochnoi konstantoi”, Trudy Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN, 198, Nauka, M., 1992, 232–241 | MR | Zbl

[14] V. I. Berdyshev, “O teoreme Dzheksona v $L_p$”, Priblizhenie funktsii v srednem, Tr. MIAN SSSR, 88, 1967, 3–16 | MR | Zbl

[15] M. Sh. Shabozov, G. A. Yusupov, “Nailuchshie polinomialnye priblizheniya v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Matem. zametki, 90:5 (2011), 764–775 | DOI | MR | Zbl

[16] M. Sh. Shabozov, A. A. Shabozova, “Nekotorye tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh differentsiruemykh v smysle Veilya funktsii v $L_2$”, Tr. IMM UrO RAN, 25, no. 4, 2019, 255–264 | DOI

[17] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_2$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | DOI | MR | Zbl

[18] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR | Zbl

[19] V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_2(D, p(z))$”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 999–1004 | MR | Zbl

[20] M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. IMM UrO RAN, 25, no. 2, 2019, 258–272 | DOI

[21] M. Sh. Shabozov, M. S. Saidusainov, “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | MR | Zbl

[22] M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | DOI | Zbl

[23] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0

1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl

[24] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[25] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR

[26] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR | Zbl