Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_2_a8, author = {M. Sh. Shabozov and E. U. Kadamshoev}, title = {Sharp {Inequalities} between the {Best} {Root-Mean-Square} {Approximations} of {Analytic} {Functions} in the {Disk} and {Some} {Smoothness} {Characteristics} in the {Bergman} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {266--281}, publisher = {mathdoc}, volume = {110}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/} }
TY - JOUR AU - M. Sh. Shabozov AU - E. U. Kadamshoev TI - Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space JO - Matematičeskie zametki PY - 2021 SP - 266 EP - 281 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/ LA - ru ID - MZM_2021_110_2_a8 ER -
%0 Journal Article %A M. Sh. Shabozov %A E. U. Kadamshoev %T Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space %J Matematičeskie zametki %D 2021 %P 266-281 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/ %G ru %F MZM_2021_110_2_a8
M. Sh. Shabozov; E. U. Kadamshoev. Sharp Inequalities between the Best Root-Mean-Square Approximations of Analytic Functions in the Disk and Some Smoothness Characteristics in the Bergman Space. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 266-281. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a8/
[1] D. Jackson, Uber die Genauigkeit der Annaheruny stetiger Funktionen durch ganze rationale Funktionen gegebenen Frades und trigonometrischen Summen gegebenen Ordnung, Dissertation, Göttingen, 1911
[2] E. S. Quade, “Trigonometric approximation in the mean”, Duke Math. J., 3 (1937), 529–543 | DOI | MR
[3] N. I. Akhiezer, Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR | Zbl
[4] S. B. Stechkin, “O poryadke nailuchshikh priblizhenii nepreryvnykh funktsii”, Izv. AN SSSR. Ser. matem., 15:3 (1951), 219–242 | MR | Zbl
[5] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya periodicheskikh funktsii v rabotakh S. B. Stechkina i ikh razvitie”, Tr. IMM UrO RAN, 16, no. 4, 2010, 5–17
[6] E. A. Storozhenko, V. G. Krotov, P. Osvald, “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L^p$, $0
1$”, Matem. sb., 98 (140):3 (11) (1975), 395–415 | MR | Zbl[7] E. A. Storozhenko, P. Osvald, “Teorema Dzheksona v prostranstvakh $L^p(R^k)$, $0
1$”, Sib. matem. zhurn., 19:4 (1978), 888–901 | MR | Zbl[8] V. I. Ivanov, “Pryamye i obratnye teoremy teorii priblizheniya v metrike $L_p$ dlya $0
1$”, Matem. zametki, 18:5 (1975), 641–658 | MR | Zbl[9] N. P. Korneichuk, “Tochnaya konstanta v teoreme D. Dzheksona o nailuchshem ravnomernom priblizhenii nepreryvnykh periodicheskikh funktsii”, Dokl. AN SSSR, 145:3 (1962), 514–515 | MR | Zbl
[10] N. P. Korneichuk, “O tochnoi konstante v neravenstve Dzheksona dlya nepreryvnykh periodicheskikh funktsii”, Matem. zametki, 32:5 (1982), 669–674 | MR | Zbl
[11] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl
[12] A. A. Ligun, “O tochnykh konstantakh priblizheniya differentsiruemykh periodicheskikh funktsii”, Matem. zametki, 14:1 (1973), 21–30 | MR | Zbl
[13] N. I. Chernykh, “Neravenstvo Dzheksona v $L_p(0,2\pi)$ $(1\le p2)$ s tochnoi konstantoi”, Trudy Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN, 198, Nauka, M., 1992, 232–241 | MR | Zbl
[14] V. I. Berdyshev, “O teoreme Dzheksona v $L_p$”, Priblizhenie funktsii v srednem, Tr. MIAN SSSR, 88, 1967, 3–16 | MR | Zbl
[15] M. Sh. Shabozov, G. A. Yusupov, “Nailuchshie polinomialnye priblizheniya v $L_2$ nekotorykh klassov $2\pi$-periodicheskikh funktsii i tochnye znacheniya ikh poperechnikov”, Matem. zametki, 90:5 (2011), 764–775 | DOI | MR | Zbl
[16] M. Sh. Shabozov, A. A. Shabozova, “Nekotorye tochnye neravenstva tipa Dzheksona–Stechkina dlya periodicheskikh differentsiruemykh v smysle Veilya funktsii v $L_2$”, Tr. IMM UrO RAN, 25, no. 4, 2019, 255–264 | DOI
[17] S. B. Vakarchuk, V. I. Zabutnaya, “Neravenstva mezhdu nailuchshimi polinomialnymi priblizheniyami i nekotorymi kharakteristikami gladkosti v prostranstve $L_2$ i poperechniki klassov funktsii”, Matem. zametki, 99:2 (2016), 215–238 | DOI | MR | Zbl
[18] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M.–L., 1964 | MR | Zbl
[19] V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Tochnye otsenki skorosti skhodimosti ryadov Fure funktsii kompleksnoi peremennoi v prostranstve $L_2(D, p(z))$”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 999–1004 | MR | Zbl
[20] M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadraticheskoe priblizhenie funktsii kompleksnogo peremennogo summami Fure po ortogonalnym sistemam”, Tr. IMM UrO RAN, 25, no. 2, 2019, 258–272 | DOI
[21] M. Sh. Shabozov, M. S. Saidusainov, “Verkhnie grani priblizheniya nekotorykh klassov funktsii kompleksnoi peremennoi ryadami Fure v prostranstve $L_2$ i znacheniya $n$-poperechnikov”, Matem. zametki, 103:4 (2018), 617–631 | DOI | MR | Zbl
[22] M. Sh. Shabozov, M. S. Saidusainov, “Srednekvadratichnoe priblizhenie funktsii kompleksnoi peremennoi ryadami Fure v vesovom prostranstve Bergmana”, Vladikavk. matem. zhurn., 20:1 (2018), 86–97 | DOI | Zbl
[23] K. V. Runovskii, “O priblizhenii semeistvami lineinykh polinomialnykh operatorov v prostranstvakh $L_p$, $0
1$”, Matem. sb., 185:8 (1994), 81–102 | MR | Zbl[24] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR
[25] V. M. Tikhomirov, Nekotorye voprosy teorii priblizhenii, Izd-vo Mosk. un-ta, M., 1976 | MR
[26] A. Pinkus, $n$-Widths in Approximation Theory, Springer-Verlag, Berlin, 1985 | MR | Zbl