Remarks on Galois Rational Coverings
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 258-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author's recent theorem on Galois rational coverings $X\dashrightarrow V$ for primitive Fano varieties $V$ is strengthened in two directions: first, the class of Galois groups $G$ is enlarged to the maximal class for which the proof works, and second, the conditions on the variety $V$ are relaxed to the divisorial canonicity requirement.
Keywords: Fano variety, divisorial canonicity, cyclic covering, branch divisor, rational map.
@article{MZM_2021_110_2_a7,
     author = {A. V. Pukhlikov},
     title = {Remarks on {Galois} {Rational} {Coverings}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {258--265},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a7/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Remarks on Galois Rational Coverings
JO  - Matematičeskie zametki
PY  - 2021
SP  - 258
EP  - 265
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a7/
LA  - ru
ID  - MZM_2021_110_2_a7
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Remarks on Galois Rational Coverings
%J Matematičeskie zametki
%D 2021
%P 258-265
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a7/
%G ru
%F MZM_2021_110_2_a7
A. V. Pukhlikov. Remarks on Galois Rational Coverings. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 258-265. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a7/

[1] A. V. Pukhlikov, “Rationally connected rational double covers of primitive Fano varieties”, Épijournal Géom. Algébrique, 4 (2020), Article no. 18 | DOI | MR | Zbl

[2] J. Kollár, Rational Curves on Algebraic Varieties, Springer-Verlag, Berlin, 1996 | MR

[3] A. V. Pukhlikov, “Biratsionalnaya geometriya pryamykh proizvedenii Fano”, Izv. RAN. Ser. matem., 69:6 (2005), 153–186 | DOI | MR | Zbl

[4] A. V. Pukhlikov, “Biratsionalno zhestkie rassloeniya Fano. II”, Izv. RAN. Ser. matem., 79:4 (2015), 175–204 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Canonical and log canonical thresholds of Fano complete intersections”, Eur. J. Math., 4:1 (2018), 381–398 | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Birational geometry of algebraic varieties with a pencil of Fano complete intersections”, Manuscripta Math., 121 (2006), 491–526 | DOI | MR | Zbl

[7] Th. Eckl, A. V. Pukhlikov, “On the global log canonical threshold of Fano complete intersections”, Eur. J. Math., 2:1 (2016), 291–303 | DOI | MR | Zbl

[8] A. V. Pukhlikov, “Biratsionalnaya geometriya dvoinykh nakrytii Fano”, Matem. sb., 199:8 (2008), 123–148 | DOI | MR

[9] A. V. Pukhlikov, “Canonical and log canonical thresholds of multiple projective spaces”, Eur. J. Math., 7:1 (2021), 135–162 | DOI | MR | Zbl

[10] A. V. Pukhlikov, Birational Geometry of Varieties, Fibred Into Complete Intersections of Codimension Two, 2021, arXiv: 2101.10830