Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_2_a6, author = {V. N. Pavlenko and D. K. Potapov}, title = {Existence of {Semiregular} {Solutions} of {Elliptic} {Systems} with {Discontinuous} {Nonlinearities}}, journal = {Matemati\v{c}eskie zametki}, pages = {239--257}, publisher = {mathdoc}, volume = {110}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/} }
TY - JOUR AU - V. N. Pavlenko AU - D. K. Potapov TI - Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities JO - Matematičeskie zametki PY - 2021 SP - 239 EP - 257 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/ LA - ru ID - MZM_2021_110_2_a6 ER -
V. N. Pavlenko; D. K. Potapov. Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 239-257. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/
[1] V. N. Pavlenko, “O razreshimosti nekotorykh nelineinykh uravnenii s razryvnymi operatorami”, Dokl. AN SSSR, 204:6 (1972), 1320–1323 | MR | Zbl
[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl
[3] C. Cosner, F. Schindler, “Upper and lower solutions for systems of second order equations with nonnegative characteristic form and discontinuous nonlinearities”, Rocky Mountain J. Math., 14:3 (1984), 549–557 | DOI | MR | Zbl
[4] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii. Glavy nelineinogo analiza, Sovremennye problemy matematiki, Fizmatgiz, M., 1962 | MR | Zbl
[5] F. J. S. A. Correa, J. V. A. Goncalves, “Sublinear elliptic systems with discontinuous nonlinearities”, Appl. Anal., 44:1-2 (1992), 37–50 | DOI | MR | Zbl
[6] C. O. Alves, de Morais D. C. Filho, M. A. S. Souto, “An application of the dual variational principle to a Hamiltonian system with discontinuous nonlinearities”, Electron. J. Differ. Equ., 2004:46 (2004) | MR
[7] L. Zhenhai, “On elliptic systems with discontinuous nonlinearities”, Period. Math. Hung., 30:3 (1995), 211–223 | DOI | MR | Zbl
[8] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988 | MR | Zbl
[9] K. Teng, “Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities”, Nonlinear Anal., 75:5 (2012), 2975–2987 | DOI | MR | Zbl
[10] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR | Zbl
[11] M. A. Krasnoselskii, A. V. Pokrovskii, “Ob ellipticheskikh uravneniyakh s razryvnymi nelineinostyami”, Dokl. AN, 342:6 (1995), 731–734 | MR | Zbl
[12] V. N. Pavlenko, D. K. Potapov, “Cuschestvovanie polupravilnykh reshenii ellipticheskikh spektralnykh zadach s razryvnymi nelineinostyami”, Matem. sb., 206:9 (2015), 121–138 | DOI | MR | Zbl
[13] K.-C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl
[14] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[15] R. Iannacci, M. N. Nkashama, J. R. Ward, “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl
[16] I. V. Shragin, “Usloviya izmerimosti superpozitsii”, Dokl. AN SSSR, 197:2 (1971), 295–298 | MR | Zbl