Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 239-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

For elliptic systems with discontinuous nonlinearities, we study the existence of strong solutions whose values are points of continuity with respect to the state variables for almost all values of the spatial variable. Such solutions are said to be semiregular. An upper-and-lower-solution principle is established for the existence of semiregular solutions to elliptic systems with discontinuous nonlinearities. This principle is used to prove theorems on the existence of semiregular solutions of elliptic systems with discontinuous nonlinearities, in particular, nontrivial solutions of problems with a parameter. Examples of classes of nonlinearities with separated variables satisfying the conditions of our theorems are given.
Keywords: elliptic system, discontinuous nonlinearity, semiregular solution, upper solution, lower solution.
@article{MZM_2021_110_2_a6,
     author = {V. N. Pavlenko and D. K. Potapov},
     title = {Existence of {Semiregular} {Solutions} of {Elliptic} {Systems} with {Discontinuous} {Nonlinearities}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--257},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/}
}
TY  - JOUR
AU  - V. N. Pavlenko
AU  - D. K. Potapov
TI  - Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities
JO  - Matematičeskie zametki
PY  - 2021
SP  - 239
EP  - 257
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/
LA  - ru
ID  - MZM_2021_110_2_a6
ER  - 
%0 Journal Article
%A V. N. Pavlenko
%A D. K. Potapov
%T Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities
%J Matematičeskie zametki
%D 2021
%P 239-257
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/
%G ru
%F MZM_2021_110_2_a6
V. N. Pavlenko; D. K. Potapov. Existence of Semiregular Solutions of Elliptic Systems with Discontinuous Nonlinearities. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 239-257. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a6/

[1] V. N. Pavlenko, “O razreshimosti nekotorykh nelineinykh uravnenii s razryvnymi operatorami”, Dokl. AN SSSR, 204:6 (1972), 1320–1323 | MR | Zbl

[2] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[3] C. Cosner, F. Schindler, “Upper and lower solutions for systems of second order equations with nonnegative characteristic form and discontinuous nonlinearities”, Rocky Mountain J. Math., 14:3 (1984), 549–557 | DOI | MR | Zbl

[4] M. A. Krasnoselskii, Polozhitelnye resheniya operatornykh uravnenii. Glavy nelineinogo analiza, Sovremennye problemy matematiki, Fizmatgiz, M., 1962 | MR | Zbl

[5] F. J. S. A. Correa, J. V. A. Goncalves, “Sublinear elliptic systems with discontinuous nonlinearities”, Appl. Anal., 44:1-2 (1992), 37–50 | DOI | MR | Zbl

[6] C. O. Alves, de Morais D. C. Filho, M. A. S. Souto, “An application of the dual variational principle to a Hamiltonian system with discontinuous nonlinearities”, Electron. J. Differ. Equ., 2004:46 (2004) | MR

[7] L. Zhenhai, “On elliptic systems with discontinuous nonlinearities”, Period. Math. Hung., 30:3 (1995), 211–223 | DOI | MR | Zbl

[8] D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988 | MR | Zbl

[9] K. Teng, “Existence and multiplicity results for some elliptic systems with discontinuous nonlinearities”, Nonlinear Anal., 75:5 (2012), 2975–2987 | DOI | MR | Zbl

[10] M. A. Krasnoselskii, A. V. Pokrovskii, “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR | Zbl

[11] M. A. Krasnoselskii, A. V. Pokrovskii, “Ob ellipticheskikh uravneniyakh s razryvnymi nelineinostyami”, Dokl. AN, 342:6 (1995), 731–734 | MR | Zbl

[12] V. N. Pavlenko, D. K. Potapov, “Cuschestvovanie polupravilnykh reshenii ellipticheskikh spektralnykh zadach s razryvnymi nelineinostyami”, Matem. sb., 206:9 (2015), 121–138 | DOI | MR | Zbl

[13] K.-C. Chang, “The obstacle problem and partial differential equations with discontinuous nonlinearities”, Comm. Pure Appl. Math., 33:2 (1980), 117–146 | DOI | MR | Zbl

[14] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[15] R. Iannacci, M. N. Nkashama, J. R. Ward, “Nonlinear second order elliptic partial differential equations at resonance”, Trans. Amer. Math. Soc., 311:2 (1989), 711–726 | DOI | MR | Zbl

[16] I. V. Shragin, “Usloviya izmerimosti superpozitsii”, Dokl. AN SSSR, 197:2 (1971), 295–298 | MR | Zbl