A Remark on the Steklov--Poincar\'e Inequality
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 234-238

Voir la notice de l'article provenant de la source Math-Net.Ru

In an $n$-dimensional bounded domain $\Omega_n$, $n\ge 2$, we prove the Steklov–Poincaré inequality with the best constant in the case where $\Omega_n$ is an $n$-dimensional ball. We also consider the case of an unbounded domain with finite measure, in which the Steklov–Poincaré inequality is proved on the basis of a Sobolev inequality.
Keywords: Steklov's inequality, Poincaré inequality, Sobolev inequality
Mots-clés : best constant.
@article{MZM_2021_110_2_a5,
     author = {Sh. M. Nasibov},
     title = {A {Remark} on the {Steklov--Poincar\'e} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {234--238},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a5/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - A Remark on the Steklov--Poincar\'e Inequality
JO  - Matematičeskie zametki
PY  - 2021
SP  - 234
EP  - 238
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a5/
LA  - ru
ID  - MZM_2021_110_2_a5
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T A Remark on the Steklov--Poincar\'e Inequality
%J Matematičeskie zametki
%D 2021
%P 234-238
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a5/
%G ru
%F MZM_2021_110_2_a5
Sh. M. Nasibov. A Remark on the Steklov--Poincar\'e Inequality. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 234-238. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a5/