Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 289-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for any map of the unit interval onto the unit square, there exist two points in the interval such that the squared Euclidean distance between their images exceeds the distance between them on the interval at least by a factor of $3.625$. The additional condition that the images of the interval endpoints belong to opposite sides of the square increases this factor to more than $4$.
Keywords: Peano curves, square-to-linear ratio.
@article{MZM_2021_110_2_a10,
     author = {E. V. Shchepin and E. Yu. Mychka},
     title = {Lower {Bounds} for the {Square-to-Linear} {Ratio} for {Plane} {Peano} {Curves}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--296},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a10/}
}
TY  - JOUR
AU  - E. V. Shchepin
AU  - E. Yu. Mychka
TI  - Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves
JO  - Matematičeskie zametki
PY  - 2021
SP  - 289
EP  - 296
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a10/
LA  - ru
ID  - MZM_2021_110_2_a10
ER  - 
%0 Journal Article
%A E. V. Shchepin
%A E. Yu. Mychka
%T Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves
%J Matematičeskie zametki
%D 2021
%P 289-296
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a10/
%G ru
%F MZM_2021_110_2_a10
E. V. Shchepin; E. Yu. Mychka. Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves. Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 289-296. http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a10/

[1] E. V. Schepin, “O fraktalnykh krivykh Peano”, Geometricheskaya topologiya i teoriya mnozhestv, Tr. MIAN, 247, Nauka, MAIK «Nauka/Interperiodika», M., 2004, 294–303 | MR | Zbl

[2] R. Niedermeier, K. Reinhardt, P. Sanders, “Towards optimal locality in mesh-indexings”, Discrete Appl. Math., 117:1-3 (2002), 211–237 | DOI | MR | Zbl

[3] E. V. Schepin, “O krivoi Serpinskogo–Knoppa”, UMN, 75:2 (452) (2020), 191–192 | DOI | MR | Zbl

[4] H. Haverkort, F. van Walderveen, “Locality and bounding-box quality of two dimensional space-filling curves”, Comput. Geom., 43:2 (2010), 131–147 | DOI | MR | Zbl