Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_2_a1, author = {Kh. Kh. Burchaev and G. Yu. Ryabykh}, title = {Inheritance of {Smoothness} by {Extremal} {Functions} in {Bergman} {Spaces~}$A_p$ for $0<p<\infty$}, journal = {Matemati\v{c}eskie zametki}, pages = {170--191}, publisher = {mathdoc}, volume = {110}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/} }
TY - JOUR AU - Kh. Kh. Burchaev AU - G. Yu. Ryabykh TI - Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0 JO - Matematičeskie zametki PY - 2021 SP - 170 EP - 191 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/ LA - ru ID - MZM_2021_110_2_a1 ER -
Kh. Kh. Burchaev; G. Yu. Ryabykh. Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0
[1] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[2] V. G. Ryabykh, “Nekotorye ekstremalnye zadachi v prostranstve $H_p'$”, Seriya tochnykh i estestv.nauk: nauchnye soobscheniya za 1964 g., Izd-vo RGU, Rostov-na-Donu, 1964, 33–34
[3] V. G. Ryabykh, “Ekstremalnye zadachi dlya summiruemykh analiticheskikh funktsii”, Sib. matem. zhurn., 27:3 (1986), 212–217 | MR | Zbl
[4] D. Khavinson, H. S. Shapiro, “Best approximation in the supremum norm by analytic and harmonic functions”, Ark. Math., 39 (2001), 339–359 | DOI | MR | Zbl
[5] C. Beneteau, D. Khavinson, “A survey of linear extremal problems in analytic function spaces”, Complex Analysis and Potential Theory, CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012, 33–46 | DOI | MR | Zbl
[6] T. Ferguson, Extremal Problems in Bergman Spaces and Extension of Ryabykh's Theorem, Univ. of Michigan, 2011
[7] V. P. Zakharyuta, V. I. Yudovich, “Obschii vid lineinogo funktsionala v $H_p'$”, UMN, 19:2 (116) (1964), 139–142 | MR | Zbl
[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.-L., 1952 | MR
[9] Kh. Kh. Burchaev, V. G. Ryabykh, Obschii vid lineinogo ogranichennogo funktsionala v metricheskom prostranstve $H_p'$, $0
1$, Dep. v VINITI No 730-75, 1975[10] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl
[11] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Nekotorye svoistva ekstremalnykh funktsii v prostranstvakh Khardi i Bergmana”, Itogi nauki. Yug Rossii, Issledovaniya po matem. analizu, 9, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2015, 125–139
[12] V. G. Ryabykh, “Priblizhenie neanaliticheskikh funktsii analiticheskimi”, Matem. sb., 197:2 (2006), 87–94 | DOI | MR | Zbl
[13] Kh. Kh. Burchaev, G. Yu. Ryabykh, “Svoistva ekstremalnykh elementov v sootnoshenii dvoistvennosti dlya prostranstva Khardi”, Vladikavk. matem. zhurn., 20:4 (2018), 5–19 | DOI | Zbl
[14] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, Integrodifferentsialnye operatory v prostranstvakh analiticheskikh funktsii i nekotorye ikh prilozheniya, ITs DGTU, Rostov-na-Donu, 2014
[15] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Analitichnost v $\mathbb C$ ekstremalnykh funktsii funktsionala, obrazovannogo polinomom, nad prostranstvom Bergmana”, Itogi nauki. Yug Rossii, Issledovaniya po matem. analizu, 8, Ch. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 204–214
[16] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Ob odnoi ekstremalnoi zadache v prostranstve Khardi $H_p$, $0
\infty$”, Sib. matem. zhurn., 58:3 (2017), 510–525 | DOI | Zbl[17] Kh. Kh. Burchaev, G. Yu. Ryabykh, “O priblizhenii neanaliticheskikh funktsii analiticheskimi”, Izv. vuzov. Matem., 2019, no. 1, 18–28 | DOI | Zbl
[18] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl
[19] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H_p$ space with $0
1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl