Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0$
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 170-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of how extremal functions for linear functionals over a Bergman space are influenced by the properties of the functions generating these functionals. For different classes of generating functions, we obtain a sufficiently exact description of qualitative properties of the corresponding extremal functions. The method developed here can be used to study similar problems in Hardy spaces.
Keywords: Bergman space, linear functional, extremal function, Lipschitz class, derivative, orthogonality, property of being Hilbert.
Mots-clés : existence
@article{MZM_2021_110_2_a1,
     author = {Kh. Kh. Burchaev and G. Yu. Ryabykh},
     title = {Inheritance of {Smoothness} by {Extremal} {Functions} in {Bergman} {Spaces~}$A_p$ for $0<p<\infty$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {170--191},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/}
}
TY  - JOUR
AU  - Kh. Kh. Burchaev
AU  - G. Yu. Ryabykh
TI  - Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0
JO  - Matematičeskie zametki
PY  - 2021
SP  - 170
EP  - 191
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/
LA  - ru
ID  - MZM_2021_110_2_a1
ER  - 
%0 Journal Article
%A Kh. Kh. Burchaev
%A G. Yu. Ryabykh
%T Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0
%J Matematičeskie zametki
%D 2021
%P 170-191
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/
%G ru
%F MZM_2021_110_2_a1
Kh. Kh. Burchaev; G. Yu. Ryabykh. Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0
                  
                

[1] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[2] V. G. Ryabykh, “Nekotorye ekstremalnye zadachi v prostranstve $H_p'$”, Seriya tochnykh i estestv.nauk: nauchnye soobscheniya za 1964 g., Izd-vo RGU, Rostov-na-Donu, 1964, 33–34

[3] V. G. Ryabykh, “Ekstremalnye zadachi dlya summiruemykh analiticheskikh funktsii”, Sib. matem. zhurn., 27:3 (1986), 212–217 | MR | Zbl

[4] D. Khavinson, H. S. Shapiro, “Best approximation in the supremum norm by analytic and harmonic functions”, Ark. Math., 39 (2001), 339–359 | DOI | MR | Zbl

[5] C. Beneteau, D. Khavinson, “A survey of linear extremal problems in analytic function spaces”, Complex Analysis and Potential Theory, CRM Proc. Lecture Notes, 55, Amer. Math. Soc., Providence, RI, 2012, 33–46 | DOI | MR | Zbl

[6] T. Ferguson, Extremal Problems in Bergman Spaces and Extension of Ryabykh's Theorem, Univ. of Michigan, 2011

[7] V. P. Zakharyuta, V. I. Yudovich, “Obschii vid lineinogo funktsionala v $H_p'$”, UMN, 19:2 (116) (1964), 139–142 | MR | Zbl

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Gostekhizdat, M.-L., 1952 | MR

[9] Kh. Kh. Burchaev, V. G. Ryabykh, Obschii vid lineinogo ogranichennogo funktsionala v metricheskom prostranstve $H_p'$, $0

1$, Dep. v VINITI No 730-75, 1975

[10] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR | Zbl

[11] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Nekotorye svoistva ekstremalnykh funktsii v prostranstvakh Khardi i Bergmana”, Itogi nauki. Yug Rossii, Issledovaniya po matem. analizu, 9, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2015, 125–139

[12] V. G. Ryabykh, “Priblizhenie neanaliticheskikh funktsii analiticheskimi”, Matem. sb., 197:2 (2006), 87–94 | DOI | MR | Zbl

[13] Kh. Kh. Burchaev, G. Yu. Ryabykh, “Svoistva ekstremalnykh elementov v sootnoshenii dvoistvennosti dlya prostranstva Khardi”, Vladikavk. matem. zhurn., 20:4 (2018), 5–19 | DOI | Zbl

[14] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, Integrodifferentsialnye operatory v prostranstvakh analiticheskikh funktsii i nekotorye ikh prilozheniya, ITs DGTU, Rostov-na-Donu, 2014

[15] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Analitichnost v $\mathbb C$ ekstremalnykh funktsii funktsionala, obrazovannogo polinomom, nad prostranstvom Bergmana”, Itogi nauki. Yug Rossii, Issledovaniya po matem. analizu, 8, Ch. 1, YuMI VNTs RAN i RSO-A, Vladikavkaz, 2014, 204–214

[16] Kh. Kh. Burchaev, V. G. Ryabykh, G. Yu. Ryabykh, “Ob odnoi ekstremalnoi zadache v prostranstve Khardi $H_p$, $0

\infty$”, Sib. matem. zhurn., 58:3 (2017), 510–525 | DOI | Zbl

[17] Kh. Kh. Burchaev, G. Yu. Ryabykh, “O priblizhenii neanaliticheskikh funktsii analiticheskimi”, Izv. vuzov. Matem., 2019, no. 1, 18–28 | DOI | Zbl

[18] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl

[19] P. L. Duren, B. W. Romberg, A. L. Shields, “Linear functionals on $H_p$ space with $0

1$”, J. Reine Angew. Math., 238 (1969), 32–60 | MR | Zbl