Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0$
Matematičeskie zametki, Tome 110 (2021) no. 2, pp. 170-191
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of how extremal functions for linear functionals over a Bergman space are influenced by the properties of the functions generating these functionals. For different classes of generating functions, we obtain a sufficiently exact description of qualitative properties of the corresponding extremal functions. The method developed here can be used to study similar problems in Hardy spaces.
Keywords:
Bergman space, linear functional, extremal function, Lipschitz class, derivative, orthogonality, property of being Hilbert.
Mots-clés : existence
Mots-clés : existence
@article{MZM_2021_110_2_a1,
author = {Kh. Kh. Burchaev and G. Yu. Ryabykh},
title = {Inheritance of {Smoothness} by {Extremal} {Functions} in {Bergman} {Spaces~}$A_p$ for $0<p<\infty$},
journal = {Matemati\v{c}eskie zametki},
pages = {170--191},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/}
}
TY - JOUR AU - Kh. Kh. Burchaev AU - G. Yu. Ryabykh TI - Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0 JO - Matematičeskie zametki PY - 2021 SP - 170 EP - 191 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_110_2_a1/ LA - ru ID - MZM_2021_110_2_a1 ER -
Kh. Kh. Burchaev; G. Yu. Ryabykh. Inheritance of Smoothness by Extremal Functions in Bergman Spaces~$A_p$ for $0