Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 75-89

Voir la notice de l'article provenant de la source Math-Net.Ru

The article continues the author's research, which began in  [1]–[3]. Inverse approximation theorems are established in the spaces $S^{(p,q)} (\sigma^{m-1})$, $m\ge 3$, including theorems of Bernstein–Stechkin–Timan type. The differential-difference characteristics of the elements of these spaces are given by the operators defined by the corresponding transformations of their Fourier-Laplace series.
Keywords: Fourier–Laplace series, best approximations, $\psi$-derivative.
Mots-clés : convolution
@article{MZM_2021_110_1_a6,
     author = {R. A. Lasuriya},
     title = {Inverse {Approximation} {Theorems} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--89},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/}
}
TY  - JOUR
AU  - R. A. Lasuriya
TI  - Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 75
EP  - 89
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/
LA  - ru
ID  - MZM_2021_110_1_a6
ER  - 
%0 Journal Article
%A R. A. Lasuriya
%T Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$
%J Matematičeskie zametki
%D 2021
%P 75-89
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/
%G ru
%F MZM_2021_110_1_a6
R. A. Lasuriya. Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/