Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 75-89
Voir la notice de l'article provenant de la source Math-Net.Ru
The article continues the author's research, which began in [1]–[3]. Inverse approximation theorems are established in the spaces $S^{(p,q)} (\sigma^{m-1})$, $m\ge 3$, including theorems of Bernstein–Stechkin–Timan type. The differential-difference characteristics of the elements of these spaces are given by the operators defined by the corresponding transformations of their Fourier-Laplace series.
Keywords:
Fourier–Laplace series, best approximations, $\psi$-derivative.
Mots-clés : convolution
Mots-clés : convolution
@article{MZM_2021_110_1_a6,
author = {R. A. Lasuriya},
title = {Inverse {Approximation} {Theorems} in the {Spaces} $S^{(p,q)}(\sigma^{m-1})$},
journal = {Matemati\v{c}eskie zametki},
pages = {75--89},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/}
}
R. A. Lasuriya. Inverse Approximation Theorems in the Spaces $S^{(p,q)}(\sigma^{m-1})$. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 75-89. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a6/