Sharp Inequalities for Rational Functions on a Circle
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

For rational functions with prescribed poles lying outside the unit circle $|z|=1$, sharp inequalities are established at points $z$, $|z|=1$. In contrast to the known results, the location of the specified poles on either side of the circle $|z|=1$ is allowed.
Keywords: polynomials, rational functions, Bernstein inequalities, rotation theorems.
@article{MZM_2021_110_1_a2,
     author = {V. N. Dubinin},
     title = {Sharp {Inequalities} for {Rational} {Functions} on a {Circle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Sharp Inequalities for Rational Functions on a Circle
JO  - Matematičeskie zametki
PY  - 2021
SP  - 29
EP  - 36
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a2/
LA  - ru
ID  - MZM_2021_110_1_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Sharp Inequalities for Rational Functions on a Circle
%J Matematičeskie zametki
%D 2021
%P 29-36
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a2/
%G ru
%F MZM_2021_110_1_a2
V. N. Dubinin. Sharp Inequalities for Rational Functions on a Circle. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a2/