Asymptotic Solution of the Cauchy Problem for a First-Order Differential Equation with a Small Parameter in a Banach Space
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 143-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a first-order differential equation with a small parameter multiplying the derivative in a Banach space is considered. The right-hand side of the equation contains the Fredholm operator perturbed by an additional operator term containing a small parameter. The asymptotic expansion of the solution in powers of the small parameter is constructed by the Vasil'yeva–Vishik–Lyusternik method. To calculate the components of the regular part of the expansion, the cascade decomposition method is used, which consists in the step-by-step splitting of the equation into equations in subspaces of decreasing dimensions. The conditions under which the boundary layer phenomenon occurs in the problem are determined.
Keywords: Cauchy problem, differential equation, first order, small parameter, Banach space, asymptotic solution, boundary layer phenomenon.
Mots-clés : cascade decomposition
@article{MZM_2021_110_1_a12,
     author = {V. I. Uskov},
     title = {Asymptotic {Solution} of the {Cauchy} {Problem} for a {First-Order} {Differential} {Equation} with a {Small} {Parameter} in a {Banach} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {143--150},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a12/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Asymptotic Solution of the Cauchy Problem for a First-Order Differential Equation with a Small Parameter in a Banach Space
JO  - Matematičeskie zametki
PY  - 2021
SP  - 143
EP  - 150
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a12/
LA  - ru
ID  - MZM_2021_110_1_a12
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Asymptotic Solution of the Cauchy Problem for a First-Order Differential Equation with a Small Parameter in a Banach Space
%J Matematičeskie zametki
%D 2021
%P 143-150
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a12/
%G ru
%F MZM_2021_110_1_a12
V. I. Uskov. Asymptotic Solution of the Cauchy Problem for a First-Order Differential Equation with a Small Parameter in a Banach Space. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 143-150. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a12/

[1] F. L. Chernousko, “Dvizhenie tverdogo tela s polostyami, zapolnennymi vyazkoi zhidkostyu, pri malykh chislakh Reinoldsa”, Zh. vychisl. matem. i matem. fiz., 5:6 (1965), 1049–1070 | Zbl

[2] V. A. Trenogin, “Razvitie i prilozheniya asimptoticheskogo metoda Lyusternika–Vishika”, UMN, 25:4 (154) (1970), 123–156 | MR | Zbl

[3] I. V. Gribkovskaya, M. G. Dmitriev, “Upravlyaemost v bolshikh sotsialno-ekonomicheskikh sistemakh s pozitsii razdeleniya dvizhenii”, Teoriya aktivnykh sistem, Tr. mezhdunarodnoi nauchno-prakticheskoi konferentsii “Upravlenie bolshimi sistemami – 2011”, IPU RAN, M., 2011, 93–96

[4] S. A. Lomov, I. S. Lomov, Osnovy matematicheskoi teorii pogranichnogo sloya, Izd-vo Mosk. un-ta, M., 2011

[5] S. P. Zubova, V. I. Uskov, “Asimptoticheskoe reshenie singulyarno vozmuschennoi zadachi Koshi dlya uravneniya pervogo poryadka v banakhovom prostranstve”, Vestn. Voronezhskogo gos. un-ta. Ser.: Fiz. Matem., 2016, no. 3, 147–155

[6] V. I. Uskov, “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s vozmuschennym fredgolmovym operatorom”, Vestnik rossiiskikh universitetov. Matematika, 25:129 (2020), 48–56 | DOI

[7] S. G. Krein, Ngo Zui Kan, “Asimptoticheskii metod v zadache o kolebaniyakh silno vyazkoi zhidkosti”, Prikl. matem. mekh., 33:3 (1969), 456–464

[8] S. P. Zubova, “Issledovanie resheniya zadachi Koshi dlya odnogo singulyarno vozmuschennogo differentsialnogo uravneniya”, Izv. vuzov. Matem., 2000, no. 8, 76–80 | MR | Zbl

[9] S. M. Nikolskii, “Lineinye uravneniya v lineinykh normirovannykh prostranstvakh”, Izv. AN SSSR. Ser. matem., 7:3 (1943), 147–166 | MR | Zbl

[10] S. P. Zubova, V. I. Uskov, “Asimptoticheskoe reshenie zadachi Koshi dlya uravneniya pervogo poryadka s malym parametrom v banakhovom prostranstve. Regulyarnyi sluchai”, Matem. zametki, 103:3 (2018), 392–403 | DOI | MR

[11] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[12] S. P. Zubova, E. V. Raetskaya, “A study of the rigidity of descriptor dynamical systems in a Banach space”, J. Math. Sci. (N.Y.), 208:1 (2015), 131–138 | DOI | MR

[13] S. P. Zubova, “O roli vozmuschenii v zadache Koshi dlya uravneniya s fredgolmovym operatorom pri proizvodnoi”, Dokl. AN, 454:4 (2014), 383–386 | DOI

[14] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl

[15] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR | Zbl