On Expansions of Solutions of Riccati's Equation in Asymptotic Series
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 131-142
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider scalar real Riccati equations with coefficients expanding in convergent power series in a neighborhood of infinity. Continued solutions of such equations are studied. Power geometry methods are used to obtain conditions for expanding these solutions in asymptotic series.
Mots-clés :
Riccati equation
Keywords: extended solution, power geometry, Newton polygon, asymptotic series.
Keywords: extended solution, power geometry, Newton polygon, asymptotic series.
@article{MZM_2021_110_1_a11,
author = {V. S. Samovol},
title = {On {Expansions} of {Solutions} of {Riccati's} {Equation} in {Asymptotic} {Series}},
journal = {Matemati\v{c}eskie zametki},
pages = {131--142},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a11/}
}
V. S. Samovol. On Expansions of Solutions of Riccati's Equation in Asymptotic Series. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 131-142. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a11/