Bendable Surfaces without Visible Deformations of Their Shape
Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 119-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the slide bendings of cylindrical and conical surfaces are trivial only in the cases of a right circular cylinder and a right circular cone, and that in all other cases, such bendings are nontrivial, although the surfaces do not change as loci in $\mathbb{R}^3$.
Keywords: curve, initial point of measuring length, slide bending, cylindrical surface, conical surface, trivial and nontrivial slide bendings of cylindrical and conical surfaces.
@article{MZM_2021_110_1_a10,
     author = {I. Kh. Sabitov},
     title = {Bendable {Surfaces} without {Visible} {Deformations} of {Their} {Shape}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a10/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Bendable Surfaces without Visible Deformations of Their Shape
JO  - Matematičeskie zametki
PY  - 2021
SP  - 119
EP  - 130
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a10/
LA  - ru
ID  - MZM_2021_110_1_a10
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Bendable Surfaces without Visible Deformations of Their Shape
%J Matematičeskie zametki
%D 2021
%P 119-130
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a10/
%G ru
%F MZM_2021_110_1_a10
I. Kh. Sabitov. Bendable Surfaces without Visible Deformations of Their Shape. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 119-130. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a10/

[1] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhnii, Chast vtoraya, OGIZ, M.-L., 1948 | MR

[2] M. Spivak, A comprehensive introduction to Differential Geometry, Vol. 5, Publish or Perish, Wilmington, DE, 1979 | MR

[3] I. Kh. Sabitov, “Kvazikonformnye otobrazheniya poverkhnosti, porozhdennye ee izometricheskimi preobrazovaniyami, i izgibaniya poverkhnosti na sebya”, Fundament. i prikl. matem., 1:1 (1995), 281–288 | MR | Zbl