Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_110_1_a0, author = {B. N. Biyarov}, title = {One {Inverse} {Problem} for the {Sturm--Liouville} {Operator}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--16}, publisher = {mathdoc}, volume = {110}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a0/} }
B. N. Biyarov. One Inverse Problem for the Sturm--Liouville Operator. Matematičeskie zametki, Tome 110 (2021) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MZM_2021_110_1_a0/
[1] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR
[2] H. Hochstadt, “On the determination of a Hill's equation from its spectrum”, Arch. Rational Mech. Anal., 19 (1965), 353–362 | DOI | MR
[3] H. Hochstadt, “A direct and inverse problem for a Hill's equation with double eigenvalues”, J. Math. Anal. Appl., 66 (1978), 507–513 | DOI | MR
[4] H. Hochstadt, B. Lieberman, “An inverse Sturm–Liouville problem with mixed given data”, SIAM J. Appl. Math., 34:4 (1978), 676–680 | DOI | MR
[5] F. Gesztesy, B. Simon, “nverse spectral analysis with partial information on the potential. I. The case of an a.c. component in the spectrum”, Helv. Phys. Acta., 70:1-2 (1997), 66–71 | MR
[6] F. Gesztesy, B. Simon, “Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum”, II. The case of discrete spectrum, Trans. Amer. Math. Soc., 452:6 (1999), 2765–2787 | DOI | MR
[7] O. A. Veliev, A. A. Shkalikov, “O bazisnosti Rissa sobstvennykh i prisoedinennykh funktsii periodicheskoi i antiperiodicheskoi zadach Shturma–Liuvillya”, Matem. zametki, 85:5 (2009), 671–686 | DOI | MR | Zbl
[8] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1988 | MR
[9] A. M. Savchuk, A. A. Shkalikov, “Obratnye zadachi dlya operatora Shturma–Liuvillya s potentsialami iz prostranstv Soboleva. Ravnomernaya ustoichivost”, Funkts. analiz i ego pril., 44:4 (2010), 34–53 | DOI | MR | Zbl
[10] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2006
[11] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR