Codazzi and Killing Tensors on a Complete Riemannian Manifold
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 901-911 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The global geometry of the traceless Killing and Codazzi tensors on complete (in particular, compact) Riemannian manifolds is studied by methods of geometric analysis. Applications are considered.
Keywords: Killing and Codazzi tensors, complete Riemannian manifold, generalized Bochner technique.
@article{MZM_2021_109_6_a8,
     author = {S. E. Stepanov and I. I. Tsyganok},
     title = {Codazzi and {Killing} {Tensors} on a {Complete} {Riemannian} {Manifold}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {901--911},
     year = {2021},
     volume = {109},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a8/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. I. Tsyganok
TI  - Codazzi and Killing Tensors on a Complete Riemannian Manifold
JO  - Matematičeskie zametki
PY  - 2021
SP  - 901
EP  - 911
VL  - 109
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a8/
LA  - ru
ID  - MZM_2021_109_6_a8
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. I. Tsyganok
%T Codazzi and Killing Tensors on a Complete Riemannian Manifold
%J Matematičeskie zametki
%D 2021
%P 901-911
%V 109
%N 6
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a8/
%G ru
%F MZM_2021_109_6_a8
S. E. Stepanov; I. I. Tsyganok. Codazzi and Killing Tensors on a Complete Riemannian Manifold. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 901-911. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a8/

[1] T. Branson, “Spectra of self-gradients on spheres”, J. Lie Theory, 9:2 (1999), 491–506 | MR

[2] E. Stein, G. Weiss, “Generalization of the Cauchy–Riemann equations and representations of the rotation group”, Amer. J. Math, 90 (1968), 163–196 | DOI | MR

[3] S. E. Stepanov, M. V. Smolnikova, “Fundamentalnye differentsialnye operatory pervogo poryadka na vneshnikh i simmetricheskikh formakh”, Izv. vuzov. Matem., 2002, no. 11, 55–60 | MR | Zbl

[4] S. E. Stepanov, M. V. Smolnikova, “Affinnaya differentsialnaya geometriya tenzorov Killinga”, Izv. vuzov. Matem., 2004, no. 11, 82–86 | MR

[5] K. Heil, A. Moroianu, U. Semmelmann, “Killing and conformal Killing tensors”, J. Geom. Phys., 106 (2016), 383–400 | DOI | MR

[6] D. Kramer, Kh. Shtefani, M. Mak-Kallum, E. Kherlt, Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982 | MR

[7] M. Eastwood, “Higher symmetries of the Laplacian”, Ann. of Math. (2), 161:3 (2005), 1645–1665 | DOI | MR

[8] K. Hell, Killing and conformal Killing tensors, Ph.D. Thesis, Institut für Geometrie und Topologie der Universität Stugart, 2017

[9] T. Sumitomo, K. Tandai, “Killing tensor fields on the standard sphere and spectra of $SO(n+1)/(SO(n-1)\times SO(2)$ and $O(n+1)/O(n-1)\times O(2)$”, Osaka Math. J., 20:1 (1983), 51–78 | MR

[10] S. E. Stepanov, “Polya simmetricheskikh tenzorov na kompaktnom rimanovom mnogoobrazii”, Matem. zametki, 52:4 (1992), 85–88 | MR | Zbl

[11] N. S. Dairbekov, V. A. Sharafutdinov, “Konformno killingovy simmetrichnye tenzornye polya na rimanovykh mnogoobraziyakh”, Matem. tr., 13:1 (2010), 85–145 | MR

[12] V. A. Sharafutdinov, “Killingovy tenzornye polya na $2$-tore”, Sib. matem. zhurn., 57:1 (2016), 199–221 | DOI | MR

[13] K. Heil, A. Moroianu, U. Semmelmann, “Killing tensors on tori”, J. Geom. Phys., 117 (2017), 1–6 | DOI | MR

[14] K. Heil, T. Jentsch, “A special class of symmetric Killing $2$-tensors”, J. Geom. Phys., 138 (2019), 103–124 | DOI | MR

[15] S. E. Stepanov, V. V. Rodionov, “Dopolnenie k odnoi rabote Zh.-P. Burginona”, Differents. geom. mnogoobrazii figur, 28 (1977), 69–73

[16] H. L. Liu, “Codazzi tensor and the topology of surfaces”, Ann. Global Anal. Geom., 16:2 (1998), 189–202 | DOI | MR

[17] H. L. Liu, U. Simon, C. P. Wang, “Higher order Codazzi tensors on conformally flat spaces”, Beiträge Algebra Geom., 39:2 (1998), 329–348 | MR

[18] J. Leder, A. Schwenk-Schellschmidt, U. Simon, M. Wiehe, “Generating higher order Codazzi tensors by functions”, Geometry and Topology of Submanifolds, IX, World Sci. Publ., River Edge, NJ, 1999, 174–191 | MR

[19] S. E. Stepanov, J. Mikeš, I. G. Shandra, “On higher-order Codazzi tensors on complete Riemannian manifolds”, Ann. Global Anal. Geom., 56:3 (2019), 429–442 | DOI | MR

[20] P. Petersen, Riemannian Geometry, Springer, New York, 2016 | MR

[21] H. Wu, The Bochner Technique in Differential Geometry, Higher Education Press, Beijing, 2017 | MR

[22] A. Besse, Mnogoobraziya Enshteina, T. 1, 2, Mir, M., 1990 | MR | Zbl

[23] J. Mikeš, V. Rovenski, S. E. Stepanov, “An example of Lichnerowicz-type Laplacian”, Ann. Glob. Anal. Geom., 58 (2020), 19–34 | DOI | MR

[24] P. Li, Geometric Analysis, Cambridge Univ. Press, Cambridge, 2012 | MR

[25] Ch. Barbance, “Sur les tenseurs symétriques”, C. R. Acad. Sci. Paris Sér. A, 276 (1973), 387–389 | MR

[26] S. Stepanov, I. Tsyganok, J. Mikeš, “On the Sampson Laplacian”, Filomat, 32:4 (2019), 1059–1070 | DOI | MR

[27] K. Yano, S. Bokhner, Krivizna i chisla Betti, IL, M., 1957 | MR | Zbl

[28] E. Calabi, “An extension of E. Hopf's maximum principle with an application to Riemannian geometry”, Duke Math. J., 25 (1957), 45–56 | DOI | MR

[29] P. Li, R. Schoen, “$L^p$ and mean value properties of subharmonic functions on Riemannian manifolds”, Acta Math., 153:1 (1984), 279–301 | MR

[30] S. A. Scherbakov, “O regulyarnosti radialnogo polya na mnogoobrazii Adamara”, Matem. zametki, 34:4 (1983), 609–623 | MR | Zbl

[31] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 2, Nauka, M., 1981 | MR | Zbl

[32] R. G. Bettiol, R. A. E. Mendes, Sectional Curvature and Weitzenböck Formulae, 2017, arXiv: 1708.09033

[33] M. Takeuchi, “Parallel submanifolds of space forms”, Manifolds and Lie Groups, Basel, Birkhäuser, 1981, 429–447 | MR

[34] L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948 | Zbl

[35] D. M. J. Calderbank, “Refined Kato inequalities and conformal weights in Riemannian geometry”, J. Funct. Anal., 173 (2000), 214–255 | DOI | MR

[36] H. Wu, R. E. Green, “Integrals of subharmonic functions on manifolds of nonnegative curvature”, Invent. Math., 27 (1974), 265–298 | DOI | MR

[37] S. T. Yau, “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25:7 (1976), 659–679 | DOI | MR

[38] M. Berger, D. Ebin, “Some decompositions of the space of symmetric tensors on a Riemannian manifold”, J. Differential Geometry, 3 (1969), 379–392 | DOI | MR