Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_6_a3, author = {M. Jasas and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas}, title = {On the {Approximation} of {Analytic} {Functions} by {Shifts} of an {Absolutely} {Convergent} {Dirichlet} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {832--841}, publisher = {mathdoc}, volume = {109}, number = {6}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/} }
TY - JOUR AU - M. Jasas AU - A. Laurinčikas AU - D. Šiaučiūnas TI - On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series JO - Matematičeskie zametki PY - 2021 SP - 832 EP - 841 VL - 109 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/ LA - ru ID - MZM_2021_109_6_a3 ER -
%0 Journal Article %A M. Jasas %A A. Laurinčikas %A D. Šiaučiūnas %T On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series %J Matematičeskie zametki %D 2021 %P 832-841 %V 109 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/ %G ru %F MZM_2021_109_6_a3
M. Jasas; A. Laurinčikas; D. Šiaučiūnas. On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 832-841. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/
[1] S. N. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl
[2] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl
[3] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, Univ. of Michigan, 1979
[4] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statist. Institute, Calcutta, 1981
[5] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR
[6] J.-L. Mauclaire, “Universality of the Riemann zeta-function: two remarks”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 311–319 | MR
[7] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl
[8] A. Laurinchikas, D. Shyauchyunas, “Zamechaniya ob universalnosti periodicheskoi dzeta-funktsii”, Matem. zametki, 80:4 (2006), 561–568 | DOI | MR | Zbl
[9] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Acad. Publ., Dordrecht, 2002 | MR
[10] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl