On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 832-841

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem dealing with the approximation of analytic functions in the strip $\{s\in \mathbb{C}: 1/2 \operatorname{Re} s1\}$ by shifts of an absolutely convergent Dirichlet series close to a periodic zeta-function with multiplicative coefficients is proved.
Keywords: periodic zeta-function, weak convergence, Voronin universality theorem.
@article{MZM_2021_109_6_a3,
     author = {M. Jasas and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas},
     title = {On the {Approximation} of {Analytic} {Functions} by {Shifts} of an {Absolutely} {Convergent} {Dirichlet} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {832--841},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/}
}
TY  - JOUR
AU  - M. Jasas
AU  - A. Laurinčikas
AU  - D. Šiaučiūnas
TI  - On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
JO  - Matematičeskie zametki
PY  - 2021
SP  - 832
EP  - 841
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/
LA  - ru
ID  - MZM_2021_109_6_a3
ER  - 
%0 Journal Article
%A M. Jasas
%A A. Laurinčikas
%A D. Šiaučiūnas
%T On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
%J Matematičeskie zametki
%D 2021
%P 832-841
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/
%G ru
%F MZM_2021_109_6_a3
M. Jasas; A. Laurinčikas; D. Šiaučiūnas. On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 832-841. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/