On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 832-841.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem dealing with the approximation of analytic functions in the strip $\{s\in \mathbb{C}: 1/2 \operatorname{Re} s1\}$ by shifts of an absolutely convergent Dirichlet series close to a periodic zeta-function with multiplicative coefficients is proved.
Keywords: periodic zeta-function, weak convergence, Voronin universality theorem.
@article{MZM_2021_109_6_a3,
     author = {M. Jasas and A. Laurin\v{c}ikas and D. \v{S}iau\v{c}i\={u}nas},
     title = {On the {Approximation} of {Analytic} {Functions} by {Shifts} of an {Absolutely} {Convergent} {Dirichlet} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {832--841},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/}
}
TY  - JOUR
AU  - M. Jasas
AU  - A. Laurinčikas
AU  - D. Šiaučiūnas
TI  - On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
JO  - Matematičeskie zametki
PY  - 2021
SP  - 832
EP  - 841
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/
LA  - ru
ID  - MZM_2021_109_6_a3
ER  - 
%0 Journal Article
%A M. Jasas
%A A. Laurinčikas
%A D. Šiaučiūnas
%T On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series
%J Matematičeskie zametki
%D 2021
%P 832-841
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/
%G ru
%F MZM_2021_109_6_a3
M. Jasas; A. Laurinčikas; D. Šiaučiūnas. On the Approximation of Analytic Functions by Shifts of an Absolutely Convergent Dirichlet Series. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 832-841. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a3/

[1] S. N. Mergelyan, “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, UMN, 7:2 (48) (1952), 31–122 | MR | Zbl

[2] S. M. Voronin, “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. matem., 39:3 (1975), 475–486 | MR | Zbl

[3] S. M. Gonek, Analytic Properties of Zeta and $L$-Functions, Ph.D. Thesis, Univ. of Michigan, 1979

[4] B. Bagchi, The Statistical Behavior and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series, Thesis, Indian Statist. Institute, Calcutta, 1981

[5] A. Laurinčikas, Limit Theorems for the Riemann Zeta-Function, Math. Appl., 352, Kluwer Acad. Publ., Dordrecht, 1996 | MR

[6] J.-L. Mauclaire, “Universality of the Riemann zeta-function: two remarks”, Ann. Univ. Sci. Budapest. Sect. Comput., 39 (2013), 311–319 | MR

[7] A. Laurinchikas, L. Meshka, “Utochnenie neravenstva universalnosti”, Matem. zametki, 96:6 (2014), 905–910 | DOI | MR | Zbl

[8] A. Laurinchikas, D. Shyauchyunas, “Zamechaniya ob universalnosti periodicheskoi dzeta-funktsii”, Matem. zametki, 80:4 (2006), 561–568 | DOI | MR | Zbl

[9] A. Laurinčikas, R. Garunkštis, The Lerch Zeta-Function, Kluwer Acad. Publ., Dordrecht, 2002 | MR

[10] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl