Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler--Poisson--Darboux Equation on a Finite Interval
Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 821-831.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the abstract Euler–Poisson–Darboux equation, boundary-value problems with Dirichlet and Neumann conditions are considered. The criterion for the uniqueness of the solution is established.
Mots-clés : Euler–Poisson–Darboux equation
Keywords: boundary-value problems, uniqueness criterion.
@article{MZM_2021_109_6_a2,
     author = {A. V. Glushak},
     title = {Uniqueness {Criterion} for the {Solution} of {Boundary-Value} {Problems} for the {Abstract} {Euler--Poisson--Darboux} {Equation} on a {Finite} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {821--831},
     publisher = {mathdoc},
     volume = {109},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a2/}
}
TY  - JOUR
AU  - A. V. Glushak
TI  - Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler--Poisson--Darboux Equation on a Finite Interval
JO  - Matematičeskie zametki
PY  - 2021
SP  - 821
EP  - 831
VL  - 109
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a2/
LA  - ru
ID  - MZM_2021_109_6_a2
ER  - 
%0 Journal Article
%A A. V. Glushak
%T Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler--Poisson--Darboux Equation on a Finite Interval
%J Matematičeskie zametki
%D 2021
%P 821-831
%V 109
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a2/
%G ru
%F MZM_2021_109_6_a2
A. V. Glushak. Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler--Poisson--Darboux Equation on a Finite Interval. Matematičeskie zametki, Tome 109 (2021) no. 6, pp. 821-831. http://geodesic.mathdoc.fr/item/MZM_2021_109_6_a2/

[1] V. K. Ivanov, I. V. Melnikova, A. I. Filinkov, Differentsialno-operatornye uravneniya i nekorrektnye zadachi, Nauka, M., 1995 | MR | Zbl

[2] S. I. Kabanikhin, O. I. Krivorotko, “Chislennyi metod resheniya zadachi Dirikhle dlya volnovogo uravneniya”, Sib. zhurn. industr. matem., 15:4 (2012), 90–101 | MR

[3] V. I. Vasilev, A. M. Kardashevskii, V. V. Popov, “Reshenie zadachi Dirikhle dlya uravneniya kolebanii struny metodom sopryazhennykh gradientov”, Vestn. SVFU, 12:2 (2015), 43–50

[4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[5] A. V. Glushak, “O stabilizatsii resheniya zadachi Dirikhle dlya odnogo ellipticheskogo uravneniya v banakhovom prostranstve”, Differents. uravneniya, 33:4 (1997), 510–514 | MR

[6] A. V. Glushak, “O razreshimosti granichnykh zadach dlya abstraktnogo uravneniya Besselya–Struve”, Differents. uravneniya, 55:8 (2019), 1103–1110 | MR

[7] A. V. Glushak, V. I. Kononenko, S. D. Shmulevich, “Ob odnoi singulyarnoi abstraktnoi zadache Koshi”, Izv. vuzov. Matem., 1986, no. 6, 55–56 | MR | Zbl

[8] A. V. Glushak, “Kriterii razreshimosti zadachi Koshi dlya abstraktnogo uravneniya Eilera–Puassona–Darbu”, Differents. uravneniya, 52:1 (2016), 41–59 | MR

[9] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, 2, IL, M., 1949 | MR | Zbl

[10] A. N. Bogolyubov, V. V. Kravtsov, Zadachi po matematicheskoi fizike, Izd-vo Mosk. un-ta, M., 1998

[11] M. K. Kerimov, “Issledovaniya o nulyakh spetsialnykh funktsii Besselya i metodakh ikh vychisleniya”, Zh. vychisl. matem. i matem. fiz., 54:9 (2014), 1387–1441 | DOI | MR

[12] K. B. Sabitov, “Zadacha Dirikhle dlya uravnenii s chastnymi proizvodnymi vysokikh poryadkov”, Matem. zametki, 97:2 (2015), 262–276 | DOI | MR | Zbl