Properties of Monotone Connected Sets
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 781-792.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of Menger-monotone sets are studied. It is proved that all boundedly weakly compact Menger-connected $(\omega\rhd n)$-approximatively compact sets are suns. The existence of a continuous selection of the Chebyshev near-center map (relative to $V$) is proved for the case in which $V\subset C(Q)$ is a $B^2$-infinitely connected set in the space $C(Q)$.
Keywords: Menger-monotone set, Menger-connected set, sun.
@article{MZM_2021_109_5_a9,
     author = {I. G. Tsar'kov},
     title = {Properties of {Monotone} {Connected} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {781--792},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/}
}
TY  - JOUR
AU  - I. G. Tsar'kov
TI  - Properties of Monotone Connected Sets
JO  - Matematičeskie zametki
PY  - 2021
SP  - 781
EP  - 792
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/
LA  - ru
ID  - MZM_2021_109_5_a9
ER  - 
%0 Journal Article
%A I. G. Tsar'kov
%T Properties of Monotone Connected Sets
%J Matematičeskie zametki
%D 2021
%P 781-792
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/
%G ru
%F MZM_2021_109_5_a9
I. G. Tsar'kov. Properties of Monotone Connected Sets. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 781-792. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/

[1] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl

[2] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[3] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl

[4] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | Zbl

[5] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell^\infty_n$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl

[6] I. G. Tsarkov, “Novye kriterii suschestvovaniya nepreryvnoi $\varepsilon$-vyborki”, Matem. zametki, 104:5 (2018), 745–754 | DOI | Zbl

[7] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka i monotonno lineino svyaznye mnozhestva”, Matem. zametki, 101:6 (2017), 919–931 | DOI | MR | Zbl

[8] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | Zbl

[9] I. G. Tsarkov, “Ustoichivost otnositelnogo chebyshëvskogo proektora v poliedralnykh prostranstvakh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 235–245 | DOI

[10] A. R. Alimov, I. G. Tsarkov, “Chebyshevskii tsentr mnozhestva, konstanta Yunga i ikh prilozheniya”, UMN, 74:5 (449) (2019), 3–82 | DOI | MR | Zbl