Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_5_a9, author = {I. G. Tsar'kov}, title = {Properties of {Monotone} {Connected} {Sets}}, journal = {Matemati\v{c}eskie zametki}, pages = {781--792}, publisher = {mathdoc}, volume = {109}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/} }
I. G. Tsar'kov. Properties of Monotone Connected Sets. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 781-792. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a9/
[1] A. R. Alimov, “Monotonnaya lineinaya svyaznost i solnechnost svyaznykh po Mengeru mnozhestv v banakhovykh prostranstvakh”, Izv. RAN. Ser. matem., 78:4 (2014), 3–18 | DOI | MR | Zbl
[2] A. L. Brown, “Suns in normed linear spaces which are finite dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl
[3] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1 (427) (2016), 3–84 | DOI | MR | Zbl
[4] A. R. Alimov, “On finite-dimensional Banach spaces in which suns are connected”, Eurasian Math. J., 6:4 (2015), 7–18 | Zbl
[5] H. Berens, L. Hetzelt, “Die metrische Struktur der Sonnen in $\ell^\infty_n$”, Aequationes Math., 27:3 (1984), 274–287 | DOI | MR | Zbl
[6] I. G. Tsarkov, “Novye kriterii suschestvovaniya nepreryvnoi $\varepsilon$-vyborki”, Matem. zametki, 104:5 (2018), 745–754 | DOI | Zbl
[7] I. G. Tsarkov, “Nepreryvnaya $\varepsilon$-vyborka i monotonno lineino svyaznye mnozhestva”, Matem. zametki, 101:6 (2017), 919–931 | DOI | MR | Zbl
[8] I. G. Tsarkov, “Approksimativnye svoistva mnozhestv i nepreryvnye vyborki”, Matem. sb., 211:8 (2020), 132–157 | DOI | Zbl
[9] I. G. Tsarkov, “Ustoichivost otnositelnogo chebyshëvskogo proektora v poliedralnykh prostranstvakh”, Tr. IMM UrO RAN, 24, no. 4, 2018, 235–245 | DOI
[10] A. R. Alimov, I. G. Tsarkov, “Chebyshevskii tsentr mnozhestva, konstanta Yunga i ikh prilozheniya”, UMN, 74:5 (449) (2019), 3–82 | DOI | MR | Zbl