New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 747-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the perturbed Hamiltonian of a multifrequency resonance harmonic oscillator, a new approach to calculating the coefficients in the procedure of quantum averaging is proposed. The procedure of quantum averaging is transferred to the space of the graded algebra of symbols by using twisted product introduced in the paper. As a result, the averaged Hamiltonian is represented as a function of generators of the quantum symmetry algebra of the harmonic part of the Hamiltonian. The proposed method is applied to the spectral problem for the Hamiltonian of the cylindrical Penning trap.
Keywords: quantum averaging method, calculus of symbols, frequency resonance, twisted product, symmetry algebra.
@article{MZM_2021_109_5_a7,
     author = {E. M. Novikova},
     title = {New {Approach} to the {Procedure} of {Quantum} {Averaging} for the {Hamiltonian} of a {Resonance} {Harmonic} {Oscillator} with {Polynomial} {Perturbation} for the {Example} of the {Spectral} {Problem} for the {Cylindrical} {Penning} {Trap}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {747--767},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/}
}
TY  - JOUR
AU  - E. M. Novikova
TI  - New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap
JO  - Matematičeskie zametki
PY  - 2021
SP  - 747
EP  - 767
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/
LA  - ru
ID  - MZM_2021_109_5_a7
ER  - 
%0 Journal Article
%A E. M. Novikova
%T New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap
%J Matematičeskie zametki
%D 2021
%P 747-767
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/
%G ru
%F MZM_2021_109_5_a7
E. M. Novikova. New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 747-767. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/

[1] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl

[2] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniem k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[3] F. G. Gustavson, “On constructing formal integrals of a Hamiltonian system near an equilibrium point”, Astron. J., 71 (1966), 670–686 | DOI

[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[5] M. V. Karasev, V. P. Maslov, “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (240) (1984), 115–173 | MR | Zbl

[6] K. Ghomari, B. Messirdi, “Quantum Birkhoff–Gustavson normal form in some completely resonant cases”, J. Math. Anal. Appl., 378:1 (2011), 306–313 | DOI | MR | Zbl

[7] M. K. Ali, “The quantum normal form and its equivalents”, J. Math. Phys., 26:10 (1985), 2565–2572 | DOI | MR

[8] B. Eckhardt, “Birkhoff–Gustavson normal form in classical and quantum mechanics”, J. Phys. A, 19:15 (1986), 2961–2972 | DOI | MR | Zbl

[9] M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 33–56 | MR | Zbl

[10] M. V. Karasev, E. M. Novikova, “Algebra i kvantovaya geometriya mnogochastotnogo rezonansa”, Izv. RAN. Ser. matem., 74:6 (2010), 55–106 | DOI | MR | Zbl

[11] M. V. Karasev, E. M. Novikova, “Algebra of symmetries of three-frequency resonance: reduction of a reducible case to an irreducible case”, Math. Notes, 104:6 (2018), 833–847 | DOI | Zbl

[12] E. M. Novikova, “Algebra of symmetries of three-frequency hyperbolic resonance”, Math. Notes, 106:6 (2019), 940–956 | DOI | Zbl

[13] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR

[14] V. E. Nazaikinskii, B. Yu. Sternin, V. E. Shatalov, Metody nekommutativnogo analiza, Tekhnosfera, M., 2002

[15] L. Charles, S. V. Ngoc, “Spectral asymptotics via the semiclassical Birkhoff normal form”, Duke Math. J., 143:3 (2008), 463–511 | DOI | MR | Zbl

[16] A. Yu. Anikin, “Kvantovye normalnye formy Birkgofa”, TMF, 160:3 (2009), 487–506 | DOI | MR | Zbl

[17] Trapped Charged Particles and Fundamental Interactions, Lecture Notes in Phys., 749, eds. K. Blaum, F. Herfurth, Springer, Berlin, 2008 | DOI

[18] F. G. Major, V. N. Gheorghe, G. Werth, Charged Particle Traps, Springer Ser. on Atomic, Optical, and Plasma Phys., 37, Springer, Berlin, 2002 | DOI

[19] E. M. Novikova, “On calculating the coefficients in the procedure of quantum averaging of the Hamiltonian of resonance harmonic oscillator perturbed by the differential operator with polynomial coefficients”, Russ. J. Math. Phys., 2021 (to appear)

[20] M. V. Karasev, E. M. Novikova, “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl