Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_5_a7, author = {E. M. Novikova}, title = {New {Approach} to the {Procedure} of {Quantum} {Averaging} for the {Hamiltonian} of a {Resonance} {Harmonic} {Oscillator} with {Polynomial} {Perturbation} for the {Example} of the {Spectral} {Problem} for the {Cylindrical} {Penning} {Trap}}, journal = {Matemati\v{c}eskie zametki}, pages = {747--767}, publisher = {mathdoc}, volume = {109}, number = {5}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/} }
TY - JOUR AU - E. M. Novikova TI - New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap JO - Matematičeskie zametki PY - 2021 SP - 747 EP - 767 VL - 109 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/ LA - ru ID - MZM_2021_109_5_a7 ER -
%0 Journal Article %A E. M. Novikova %T New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap %J Matematičeskie zametki %D 2021 %P 747-767 %V 109 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/ %G ru %F MZM_2021_109_5_a7
E. M. Novikova. New Approach to the Procedure of Quantum Averaging for the Hamiltonian of a Resonance Harmonic Oscillator with Polynomial Perturbation for the Example of the Spectral Problem for the Cylindrical Penning Trap. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 747-767. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a7/
[1] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | Zbl
[2] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniem k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR
[3] F. G. Gustavson, “On constructing formal integrals of a Hamiltonian system near an equilibrium point”, Astron. J., 71 (1966), 670–686 | DOI
[4] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965
[5] M. V. Karasev, V. P. Maslov, “Asimptoticheskoe i geometricheskoe kvantovanie”, UMN, 39:6 (240) (1984), 115–173 | MR | Zbl
[6] K. Ghomari, B. Messirdi, “Quantum Birkhoff–Gustavson normal form in some completely resonant cases”, J. Math. Anal. Appl., 378:1 (2011), 306–313 | DOI | MR | Zbl
[7] M. K. Ali, “The quantum normal form and its equivalents”, J. Math. Phys., 26:10 (1985), 2565–2572 | DOI | MR
[8] B. Eckhardt, “Birkhoff–Gustavson normal form in classical and quantum mechanics”, J. Phys. A, 19:15 (1986), 2961–2972 | DOI | MR | Zbl
[9] M. Karasev, “Noncommutative algebras, nano-structures, and quantum dynamics generated by resonances. II”, Adv. Stud. Contemp. Math. (Kyungshang), 11:1 (2005), 33–56 | MR | Zbl
[10] M. V. Karasev, E. M. Novikova, “Algebra i kvantovaya geometriya mnogochastotnogo rezonansa”, Izv. RAN. Ser. matem., 74:6 (2010), 55–106 | DOI | MR | Zbl
[11] M. V. Karasev, E. M. Novikova, “Algebra of symmetries of three-frequency resonance: reduction of a reducible case to an irreducible case”, Math. Notes, 104:6 (2018), 833–847 | DOI | Zbl
[12] E. M. Novikova, “Algebra of symmetries of three-frequency hyperbolic resonance”, Math. Notes, 106:6 (2019), 940–956 | DOI | Zbl
[13] M. V. Karasev, V. P. Maslov, Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991 | MR
[14] V. E. Nazaikinskii, B. Yu. Sternin, V. E. Shatalov, Metody nekommutativnogo analiza, Tekhnosfera, M., 2002
[15] L. Charles, S. V. Ngoc, “Spectral asymptotics via the semiclassical Birkhoff normal form”, Duke Math. J., 143:3 (2008), 463–511 | DOI | MR | Zbl
[16] A. Yu. Anikin, “Kvantovye normalnye formy Birkgofa”, TMF, 160:3 (2009), 487–506 | DOI | MR | Zbl
[17] Trapped Charged Particles and Fundamental Interactions, Lecture Notes in Phys., 749, eds. K. Blaum, F. Herfurth, Springer, Berlin, 2008 | DOI
[18] F. G. Major, V. N. Gheorghe, G. Werth, Charged Particle Traps, Springer Ser. on Atomic, Optical, and Plasma Phys., 37, Springer, Berlin, 2002 | DOI
[19] E. M. Novikova, “On calculating the coefficients in the procedure of quantum averaging of the Hamiltonian of resonance harmonic oscillator perturbed by the differential operator with polynomial coefficients”, Russ. J. Math. Phys., 2021 (to appear)
[20] M. V. Karasev, E. M. Novikova, “Predstavlenie tochnykh i kvaziklassicheskikh sobstvennykh funktsii cherez kogerentnye sostoyaniya. Atom vodoroda v magnitnom pole”, TMF, 108:3 (1996), 339–387 | DOI | MR | Zbl