Homology of Digraphs
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 705-722.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theory of singular cubic homology of digraphs is developed; the obtained homology groups are proved to be functorial and homotopy invariant. Commutative diagrams of exact sequences similar to the classical ones are constructed, and a relationship between the cubic homology and the path homology of a digraph is described. Carrying over the results to graphs, multigraphs, and quivers is discussed.
Keywords: homology of digraphs, singular cubic homology, path homology, cubic graphs.
@article{MZM_2021_109_5_a4,
     author = {A. A. Grigor'yan and Yu. V. Muranov and R. B. Jimenez},
     title = {Homology of {Digraphs}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {705--722},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a4/}
}
TY  - JOUR
AU  - A. A. Grigor'yan
AU  - Yu. V. Muranov
AU  - R. B. Jimenez
TI  - Homology of Digraphs
JO  - Matematičeskie zametki
PY  - 2021
SP  - 705
EP  - 722
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a4/
LA  - ru
ID  - MZM_2021_109_5_a4
ER  - 
%0 Journal Article
%A A. A. Grigor'yan
%A Yu. V. Muranov
%A R. B. Jimenez
%T Homology of Digraphs
%J Matematičeskie zametki
%D 2021
%P 705-722
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a4/
%G ru
%F MZM_2021_109_5_a4
A. A. Grigor'yan; Yu. V. Muranov; R. B. Jimenez. Homology of Digraphs. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 705-722. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a4/

[1] A. Dimakis, F. Múller-Hoissen, “Discrete differential calculus: graphs, topologies, and gauge theory”, J. Math. Phys., 35:12 (1994), 6703–6735 | DOI | MR | Zbl

[2] Y. Lin, L. Lu, S.-T. Yau, “Ricci curvature of graphs”, Tohoku Math. J. (2), 63:4 (2011), 605–627 | DOI | MR | Zbl

[3] A. A. Grigor'yan, Introduction to Analysis on Graphs, Univ. Lecture Ser., 71, Amer. Math. Soc., Providence, RI, 2018 | MR | Zbl

[4] A. A. Grigoryan, Iong Lin, Yu. V. Muranov, Shintan Yau, “Kompleksy putei i ikh gomologii”, Fundament. i prikl. matem., 21:5 (2016), 79–128

[5] A. A. Grigor'yan, Y. Lin, Y. V. Muranov, S.-T. Yau, “Cohomology of digraphs and (undirected) graphs”, Asian J. Math., 19:5 (2015), 887–931 | DOI | MR | Zbl

[6] A. A. Grigor'yan, Y. V. Muranov, S.-T. Yau, “Graphs associated with simplicial complexes”, Homology Homotopy Appl., 16:1 (2014), 295–311 | DOI | MR | Zbl

[7] A. A. Grigor'yan, Y. Lin, Y. V. Muranov, S.-T. Yau, “Homotopy theory for digraphs”, Pure Appl. Math. Q., 10:4 (2014), 619–674 | MR | Zbl

[8] A. A. Grigor'yan, R. Jimenez, Y. V. Muranov, S.-T. Yau, “On the path homology theory of digraphs and Eilenberg–Steenrod axioms”, Homology Homotopy Appl., 20:2 (2018), 179–205 | DOI | MR | Zbl

[9] A. A. Grigor'yan, Y. V. Muranov, V. V. Vershinin, S.-T. Yau, “Path homology theory of multigraphs and quivers”, Forum Math., 30:5 (2018), 1319–1337 | DOI | MR | Zbl

[10] N. P. Dolbilin, M. A. Shtanko, M. I. Shtogrin, “Kubicheskie mnogoobraziya v reshetkakh”, Izv. RAN. Ser. matem., 58:2 (1994), 93–107 | MR | Zbl

[11] M. E. Talbi, D. Benayat, “The homotopy exact sequence of a pair of graphs”, Mediterr. J. Math., 35:2 (2013), 813–828 | MR

[12] H. Barcelo, C. Greene, A. S. Jarrah, V. Welker, “Discrete cubical and path homologies of graphs”, Algebr. Comb., 2:3 (2019), 417–437 | DOI | MR | Zbl

[13] P. J. Hilton, S. Wylie, Homology Theory. An introduction to Algebraic Topology, Cambridge Univ. Press, Cambridge, 1960 | MR | Zbl

[14] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl