Some Properties of Homogeneous $\mathcal E$-Manifolds
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 691-704.

Voir la notice de l'article provenant de la source Math-Net.Ru

Properties of homogeneous spaces having an invariant $\mathcal E$-structure (a generalization of the structure of a homogeneous dual manifold) are studied. Simply connected homogeneous spaces of dimension $5$ with such a structure are described up to a diffeomorphism.
Keywords: homogeneous space, $\mathcal E$-structure, dual numbers, natural geometry.
@article{MZM_2021_109_5_a3,
     author = {V. V. Gorbatsevich},
     title = {Some {Properties} of {Homogeneous} $\mathcal E${-Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {691--704},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a3/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Some Properties of Homogeneous $\mathcal E$-Manifolds
JO  - Matematičeskie zametki
PY  - 2021
SP  - 691
EP  - 704
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a3/
LA  - ru
ID  - MZM_2021_109_5_a3
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Some Properties of Homogeneous $\mathcal E$-Manifolds
%J Matematičeskie zametki
%D 2021
%P 691-704
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a3/
%G ru
%F MZM_2021_109_5_a3
V. V. Gorbatsevich. Some Properties of Homogeneous $\mathcal E$-Manifolds. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 691-704. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a3/

[1] V. V. Gorbatsevich, “Dualnye i pochti dualnye odnorodnye prostranstva”, Izv. RAN. Ser. matem., 83:1 (2019), 25–58 | DOI

[2] V. V. Gorbatsevich, “Osnovy teorii dualnykh algebr Li”, Izv. vuzov. Matem., 2018, no. 4, 33–48 | Zbl

[3] V. V. Gorbatsevich, “O geometrii resheniya priblizhennykh uravnenii i ikh simmetriyakh”, Ufimsk. matem. zhurn., 9:2 (2017), 40–55 | Zbl

[4] V. V. Gorbatsevich, “Corrections and Additions to My Article “Dual and Almost-Dual Homogeneous Spaces””, 2020, arXiv: 2007.14303

[5] F. M. Malyshev, “O razlozheniyakh nilpotentnykh algebr Li”, Matem. zametki, 23:1 (1978), 27–30 | MR | Zbl

[6] J. Hjelmslev, “Die naturliche Geometrie”, Abh. Math. Sem. Univ. Hamburg, 2 (1923), 1–36 | MR | Zbl

[7] G. D. Mostow, “The extensibility of local Lie groups of thansformations and groups on surfaces”, Ann. of Math. (2), 52 (1950), 606–636 | DOI | MR | Zbl

[8] V. V. Gorbatsevich, “O trekhmernykh odnorodnykh prostranstvakh”, Sib. matem. zhurn., 18:2 (1977), 280–293 | MR | Zbl