Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 681-690.

Voir la notice de l'article provenant de la source Math-Net.Ru

The density of smooth functions in weighted Sobolev spaces that are anisotropic with respect to the order of the derivatives and the weight functions is established.
Keywords: density of smooth functions, weighted Sobolev spaces.
@article{MZM_2021_109_5_a2,
     author = {A. Yu. Golovko},
     title = {Density of {Smooth} {Functions} in {Anisotropic} {Weighted} {Sobolev} {Spaces} with {Weights} that are {Locally} {Bounded} and {Locally} {Bounded} {Away} from {Zero}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--690},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a2/}
}
TY  - JOUR
AU  - A. Yu. Golovko
TI  - Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero
JO  - Matematičeskie zametki
PY  - 2021
SP  - 681
EP  - 690
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a2/
LA  - ru
ID  - MZM_2021_109_5_a2
ER  - 
%0 Journal Article
%A A. Yu. Golovko
%T Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero
%J Matematičeskie zametki
%D 2021
%P 681-690
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a2/
%G ru
%F MZM_2021_109_5_a2
A. Yu. Golovko. Density of Smooth Functions in Anisotropic Weighted Sobolev Spaces with Weights that are Locally Bounded and Locally Bounded Away from Zero. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 681-690. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a2/

[1] J. Deny, J. Lions, “Les espaces du type de Beppo”, Ann. Inst. Fourier (Grenoble), 5 (1955), 305–370 | DOI | MR

[2] V. I. Burenkov, “O plotnosti beskonechno differentsiruemykh funktsii v prostranstvakh Soboleva dlya proizvolnogo otkrytogo mnozhestva”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. V, Tr. MIAN SSSR, 131, 1974, 39–50 | MR | Zbl

[3] V. I. Burenkov, “O plotnosti beskonechno differentsiruemykh funktsii v prostranstvakh funktsii, zadannykh na proizvolnom otkrytom mnozhestve”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k nekotorym zadacham matematicheskoi fiziki, Novosibirsk, 1975, 9–22 | MR

[4] V. I. Burenkov, “Mollifying operators with variable step and their application to approximation by infinitely differentiable functions”, Nonlinear Analysis, Function Apaces and Applications, Vol. 2, Teubner, Leipzig, 1982, 5–37 | MR | Zbl

[5] V. I. Burenkov, Sobolev Spaces on Domains, B. G. Teubner, Stuttgart, 1998 | MR | Zbl

[6] V. Gol'dshtein, A. Ukhlov, “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361:7 (2009), 3829–3850 | DOI | MR | Zbl

[7] O. V. Besov, “O plotnosti finitnykh funktsii v vesovom prostranstve S. L. Soboleva”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 9, Tr. MIAN SSSR, 161, 1983, 29–47 | MR | Zbl

[8] L. D. Kudryavtsev, “O postroenii posledovatelnosti finitnykh funktsii, approksimiruyuschikh funktsii vesovykh klassov”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 8, Tr. MIAN SSSR, 156, 1980, 121–129 | MR | Zbl

[9] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl

[10] V. V. Zhikov, “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | DOI | MR | Zbl

[11] V. P. Ilin, “Ob usloviyakh spravedlivosti neravenstv mezhdu $L_p$-normami chastnykh proizvodnykh funktsii mnogikh peremennykh”, Avtomaticheskoe programmirovanie, chislennye metody i funktsionalnyi analiz, Tr. MIAN SSSR, 96, Nauka. Leningradskoe otdelenie, Leningrad, 1968, 205–242 | MR | Zbl

[12] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl

[13] O. V. Besov, “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Matem. sb., 201:12 (2010), 69–82 | DOI | MR | Zbl

[14] A. Yu. Golovko, “Additivnye i multiplikativnye anizotropnye otsenki integralnykh norm differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki, Tr. MIAN, 290, MAIK “Nauka/Interperiodika”, M., 2015, 293–303 | DOI

[15] S. L. Sobolev, Nekotorye premeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR