A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 797-800.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: completeness of the system of eigenfunctions, non-self-adjoint Schrödinger operator, basis property.
@article{MZM_2021_109_5_a11,
     author = {S. N. Tumanov},
     title = {A {Completeness} {Theorem} for the {System} of {Eigenfunctions} of the {Complex} {Schr\"odinger} {Operator} with {Potential} $q(x)=cx^\alpha$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/}
}
TY  - JOUR
AU  - S. N. Tumanov
TI  - A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 797
EP  - 800
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/
LA  - ru
ID  - MZM_2021_109_5_a11
ER  - 
%0 Journal Article
%A S. N. Tumanov
%T A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
%J Matematičeskie zametki
%D 2021
%P 797-800
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/
%G ru
%F MZM_2021_109_5_a11
S. N. Tumanov. A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/

[1] S. Tumanov, J. Funct. Anal., 280:7 (2020), 108820 | DOI | MR

[2] E. B. Davies, Bull. Lond. Math. Soc., 32:4 (2000), 432–438 | DOI | MR | Zbl

[3] D. Krejčiřík, P. Siegl, J. Viola, J. Math. Phys., 56:10 (2015), 103513 | MR | Zbl

[4] B. Mityagin, P. Siegl, J. Viola, J. Funct. Anal., 272:8 (2017), 3129–3175 | DOI | MR | Zbl

[5] D. Krejčiřík, P. Siegl, Phys. Rev. D, 86 (2012), 121702(R) | DOI

[6] A. M. Savchuk, A. A. Shkalikov, Funkts. analiz i ego pril., 51:1 (2017), 82–98 | DOI | MR | Zbl

[7] C. M. Bender, P. N. Boettcher, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl

[8] C. M. Bender, Rep. Prog. Phys., 70:6 (2007), 947–1018 | DOI | MR

[9] List of Open Problems. AIM Workshop “Mathematical Aspects of Physics with Non-Self-Adjoint Operators”, https://aimath.org/pastworkshops/nonselfadjointproblems.pdf

[10] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Clarendon Press, Oxford, 1962 | MR | Zbl

[11] V. B. Lidskii, Tr. MMO, 9, GIFML, M., 1960, 45–79 | MR | Zbl

[12] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956 | MR | Zbl