A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 797-800

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: completeness of the system of eigenfunctions, non-self-adjoint Schrödinger operator, basis property.
@article{MZM_2021_109_5_a11,
     author = {S. N. Tumanov},
     title = {A {Completeness} {Theorem} for the {System} of {Eigenfunctions} of the {Complex} {Schr\"odinger} {Operator} with {Potential} $q(x)=cx^\alpha$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {797--800},
     publisher = {mathdoc},
     volume = {109},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/}
}
TY  - JOUR
AU  - S. N. Tumanov
TI  - A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 797
EP  - 800
VL  - 109
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/
LA  - ru
ID  - MZM_2021_109_5_a11
ER  - 
%0 Journal Article
%A S. N. Tumanov
%T A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$
%J Matematičeskie zametki
%D 2021
%P 797-800
%V 109
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/
%G ru
%F MZM_2021_109_5_a11
S. N. Tumanov. A Completeness Theorem for the System of Eigenfunctions of the Complex Schr\"odinger Operator with Potential $q(x)=cx^\alpha$. Matematičeskie zametki, Tome 109 (2021) no. 5, pp. 797-800. http://geodesic.mathdoc.fr/item/MZM_2021_109_5_a11/