Controlled Semi-Markov Processes with Constraints on Control Strategies and Construction of Optimal Strategies in Reliability and Safety Models
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 571-580.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of a distribution for which a linear fractional functional attains an extremum in the case of uncountably many linear constraints. Several examples of how these mathematical results can be used to analyze controlled reliability and safety models are given.
Keywords: controlled semi-Markov process, control strategy, linear-fractional functional, optimization problem.
@article{MZM_2021_109_4_a7,
     author = {V. A. Kashtanov and O. B. Zaiceva and A. A. Efremov},
     title = {Controlled {Semi-Markov} {Processes} with {Constraints} on {Control} {Strategies} and {Construction} of {Optimal} {Strategies} in {Reliability} and {Safety} {Models}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--580},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a7/}
}
TY  - JOUR
AU  - V. A. Kashtanov
AU  - O. B. Zaiceva
AU  - A. A. Efremov
TI  - Controlled Semi-Markov Processes with Constraints on Control Strategies and Construction of Optimal Strategies in Reliability and Safety Models
JO  - Matematičeskie zametki
PY  - 2021
SP  - 571
EP  - 580
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a7/
LA  - ru
ID  - MZM_2021_109_4_a7
ER  - 
%0 Journal Article
%A V. A. Kashtanov
%A O. B. Zaiceva
%A A. A. Efremov
%T Controlled Semi-Markov Processes with Constraints on Control Strategies and Construction of Optimal Strategies in Reliability and Safety Models
%J Matematičeskie zametki
%D 2021
%P 571-580
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a7/
%G ru
%F MZM_2021_109_4_a7
V. A. Kashtanov; O. B. Zaiceva; A. A. Efremov. Controlled Semi-Markov Processes with Constraints on Control Strategies and Construction of Optimal Strategies in Reliability and Safety Models. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 571-580. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a7/

[1] E. Yu. Barzilovich, Yu. K. Belyaev, V. A. Kashtanov i dr., Voprosy matematicheskoi teorii nadezhnosti, Radio i svyaz, M., 1983 | MR

[2] A. A Borovkov, “O printsipakh bolshikh uklonenii dlya obobschennykh protsessov vosstanovleniya”, Matem. zametki, 106:6 (2019), 811–820 | DOI | Zbl

[3] V. Dzhevell, “Upravlyaemye polumarkovskie protsessy”, Kibernetich. sbornik. Nov. seriya, 4, Mir, M., 97–134

[4] V. A. Kashtanov, “O strukture funktsionala nakopleniya, postroennogo na traektoriyakh polumarkovskogo protsessa s konechnym mnozhestvom sostoyanii”, Teoriya veroyatn. i ee primen., 60:2 (2015), 272–289 | DOI | MR

[5] A. P Cherenkov, “Teoremy suschestvovaniya dlya polumarkovskogo protsessa s proizvolnym mnozhestvom sostoyanii”, Matem. zametki, 15:4 (1974), 621–630 | MR | Zbl

[6] E. Yu. Barzilovich, V. A. Kashtanov, Nekotorye matematicheskie voprosy teorii obsluzhivaniya slozhnykh sistem, Sovetskoe radio, M., 1971

[7] R. Barlou, F. Proshan, Matematicheskaya teoriya nadezhnosti, Sovetskoe radio, M., 1969 | MR

[8] V. A. Kashtanov, O. B. Zaitseva, Issledovanie operatsii (lineinoe programmirovanie i stokhasticheskie modeli), INFRA-M, M., 2016

[9] V. A. Kashtanov, A. I. Medvedev, Teoriya nadezhnosti slozhnykh sistem, Fizmatlit, M., 2010

[10] V. A. Kashtanov, I. M. Yanishevskii, “Issledovanie funktsionalov na traektoriyakh polumarkovskogo protsessa s konechnym mnozhestvom sostoyanii”, Kibernetika i sistemnyi analiz, 34:1 (1998), 145–156 | Zbl

[11] V. A. Kashtanov, “Discrete distributions in control problems”, Probabilistic Methods in Discrete Mathematics, VSP, Utrecht, 1997, 267–274 | MR | Zbl

[12] O. B. Zaitseva, V. A. Kashtanov, “O minimaksnykh podkhodakh v zadachakh bezopasnosti”, Trudy KarNTs RAN, 2013, no. 1, Ser. Matematicheskoe modelirovanie i informatsionnye tekhnologii. Vyp. 4, 55–67