Integral Inequalities in the Theory of Hessian Operators
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 552-563

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the influence of new geometric invariants of domains on Hessian integral inequalities and provides a new proof of the well-known Trudinger–Wang inequalities. A comparative analysis of the Trudinger–Wang inequalities with the classical Poincaré–Friedrichs inequality is carried out; it shows that these inequalities are qualitatively different. It is shown that Hessian integral inequalities contain information of new type and have no analogues in classical functional analysis.
Keywords: Hessian operators, Hessian integrals, Gårding cones
Mots-clés : $p$-convex hypersurfaces.
@article{MZM_2021_109_4_a5,
     author = {N. M. Ivochkina and S. I. Prokof'eva and G. V. Yakunina},
     title = {Integral {Inequalities} in the {Theory} of {Hessian} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--563},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/}
}
TY  - JOUR
AU  - N. M. Ivochkina
AU  - S. I. Prokof'eva
AU  - G. V. Yakunina
TI  - Integral Inequalities in the Theory of Hessian Operators
JO  - Matematičeskie zametki
PY  - 2021
SP  - 552
EP  - 563
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/
LA  - ru
ID  - MZM_2021_109_4_a5
ER  - 
%0 Journal Article
%A N. M. Ivochkina
%A S. I. Prokof'eva
%A G. V. Yakunina
%T Integral Inequalities in the Theory of Hessian Operators
%J Matematičeskie zametki
%D 2021
%P 552-563
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/
%G ru
%F MZM_2021_109_4_a5
N. M. Ivochkina; S. I. Prokof'eva; G. V. Yakunina. Integral Inequalities in the Theory of Hessian Operators. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 552-563. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/