Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_4_a5, author = {N. M. Ivochkina and S. I. Prokof'eva and G. V. Yakunina}, title = {Integral {Inequalities} in the {Theory} of {Hessian} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {552--563}, publisher = {mathdoc}, volume = {109}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/} }
TY - JOUR AU - N. M. Ivochkina AU - S. I. Prokof'eva AU - G. V. Yakunina TI - Integral Inequalities in the Theory of Hessian Operators JO - Matematičeskie zametki PY - 2021 SP - 552 EP - 563 VL - 109 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/ LA - ru ID - MZM_2021_109_4_a5 ER -
N. M. Ivochkina; S. I. Prokof'eva; G. V. Yakunina. Integral Inequalities in the Theory of Hessian Operators. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 552-563. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a5/
[1] L. C. Evans, “Classical solutions of fully nonlinear, convex second order elliptic equations”, Comm. Pure Appl. Math., 35:3 (1982), 333–363 | DOI | MR | Zbl
[2] N. V. Krylov, “Ogranichenno neodnorodnye ellipticheskie i parabolicheskie uravneniya v oblasti”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 75–108 | MR | Zbl
[3] M. V. Safonov, “Neravenstvo Kharnaka dlya ellipticheskikh uravnenii i gelderovost ikh reshenii”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 12, Zap. nauchn. sem. LOMI, 96, Izd-vo «Nauka», Leningrad. otd., L., 1980, 272–287 | MR | Zbl
[4] L. Gårding, “An inequality for hyperbolic polynomials”, J. Math. Mech., 8 (1959), 957–965 | MR
[5] N. M. Ivochkina, S. I. Prokofeva, G. V. Yakunina, “Konusy Gordinga v sovremennoi teorii polnostyu nelineinykh differentsialnykh uravnenii vtorogo poryadka”, Problemy matem. analiza, 64 (2012), 63–80 | MR | Zbl
[6] N. M. Ivochkina, “Opisanie konusov ustoichivosti, porozhdaemykh differentsialnymi operatorami tipa Monzha–Ampera”, Matem. sb., 122 (164):2 (10) (1983), 265–275 | MR | Zbl
[7] N. M. Ivochkina, N. V. Filimonenkova, “On algebraic and geometric conditions in the theory of Hessian equations”, J. Fixed Point Theory Appl., 16:1-2 (2015), 11–25 | MR
[8] N. M. Ivochkina, N. V. Filimonenkova, “On the backgrounds of the theory of $m$-Hessian equations”, Commun. Pure Appl. Anal., 12:4 (2013), 1687–1703 | DOI | MR | Zbl
[9] N. M. Ivochkina, N. V. Filimonenkova, “On two symmetries in the theory of $m$-Hessian operators”, Topol. Methods Nonlinear Anal., 52 (2018), 31–47 | MR | Zbl
[10] L. Caffarelli, L. Nirenberg, J. Spruck, “The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl
[11] N. M. Ivochkina, “Ot konusov Gordinga k $p$-vypuklym giperpoverkhnostyam”, Trudy Shestoi Mezhdunarodnoi konferentsii po differentsialnym i funktsionalno-differentsialnym uravneniyam, Ch. 1 (Moskva, 14–21 avgusta, 2011), SMFN, 45, RUDN, M., 2012, 94–104 | MR
[12] N. M. Ivochkina, N. V. Filimonenkova, Geometricheskie modeli v teorii nelineinykh differentsialnykh uravnenii, Preprint Sankt-Peterburgskogo matem. ob-va No 6, 2016
[13] X. J. Wang, “A class of fully nonlinear elliptic equations and related functionals”, Indiana Univ. Math. J., 43 (1994), 25–54 | DOI | MR | Zbl
[14] N. S. Trudinger, X. J. Wang, “A Poincare type inequality for Hessian integrals”, Calc. Var. Partial Differential Equations, 6:4 (1998), 315–328 | DOI | MR | Zbl
[15] I. E. Verbitsky, “The Hessian Sobolev inequality and its extensions”, Discrete Contin. Dyn. Syst., 35:12 (2015), 6165–6169 | DOI | MR
[16] A. V. Pogorelov, Mnogomernaya problema Minkovskogo, Nauka, M., 1975 | MR
[17] N. S. Trudinger, “On the Dirichlet problem for Hessian equations”, Acta. Math., 175:2 (1995), 151–164 | DOI | MR | Zbl
[18] N. V. Filimonenkova, “O klassicheskoi razreshimosti zadachi Dirikhle dlya nevyrozhdennykh $m$-gessianovskikh uravnenii”, Problemy matem. analiza, 60 (2011), 89–111 | MR
[19] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | Zbl