Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 529-543.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of $n$th-order ordinary differential equations with relay nonlinearity and periodic perturbation function on the right-hand side is studied. The matrix of the system has real nonzero eigenvalues, among which there is at least one positive and one multiple eigenvalue. A nonsingular transformation that reduces the matrix of the system to Jordan form is used. Continuous periodic solutions with two switching points in the phase space of the system are considered. It is assumed that the period of the perturbation function is a multiple of the periods of these solutions. Necessary conditions for the existence of such solutions are established. An existence theorem for a solution of period equal to the period of the perturbation function is proved. A numerical example confirming the obtained results is presented.
Keywords: system of ordinary differential equations, relay nonlinearity with hysteresis, periodic perturbation function, multiple eigenvalue, canonical transformation, periodic solution, switching points, switching points.
Mots-clés : Jordan matrix
@article{MZM_2021_109_4_a3,
     author = {V. V. Yevstafyeva},
     title = {Existence of~$T/k${-Periodic} {Solutions} of a {Nonlinear} {Nonautonomous} {System} {Whose} {Matrix} {Has} a {Multiple} {Eigenvalue}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/}
}
TY  - JOUR
AU  - V. V. Yevstafyeva
TI  - Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
JO  - Matematičeskie zametki
PY  - 2021
SP  - 529
EP  - 543
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/
LA  - ru
ID  - MZM_2021_109_4_a3
ER  - 
%0 Journal Article
%A V. V. Yevstafyeva
%T Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
%J Matematičeskie zametki
%D 2021
%P 529-543
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/
%G ru
%F MZM_2021_109_4_a3
V. V. Yevstafyeva. Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 529-543. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/

[1] M. A. Krasnoselskii, A. V. Pokrovskii, “Periodicheskie kolebaniya v sistemakh s releinymi nelineinostyami”, Dokl. AN SSSR, 216:4 (1974), 733–736 | MR | Zbl

[2] M. A. Krasnoselskii, A. V. Pokrovskii, “Uravneniya s razryvnymi nelineinostyami”, Dokl. AN SSSR, 248:5 (1979), 1056–1059 | MR | Zbl

[3] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR

[4] A. V. Pokrovskii, “Suschestvovanie i raschet ustoichivykh rezhimov v releinykh sistemakh”, Avtomat. i telemekh., 1986, no. 4, 16–23 | MR | Zbl

[5] A. M. Krasnoselskii, “Vynuzhdennye kolebaniya v sistemakh s gisterezisnymi nelineinostyami”, Dokl. AN SSSR, 292:5 (1987), 1078–1082 | MR | Zbl

[6] M. A. Krasnoselskii, A. V. Pokrovskii, V. V. Chernorutskii, Zh. Tronel, “O dinamike upravlyaemykh sistem, opisyvaemykh uravneniyami parabolicheskogo tipa s gisterezisnymi nelineinostyami”, Avtomat. i telemekh., 1992, no. 11, 65–71 | MR

[7] J. W. Macki, P. Nistri, P. Zecca, “Mathematical models for hysteresis”, SIAM Rev., 35:1 (1993), 94–123 | DOI | MR | Zbl

[8] A. Visintin, Differential Models of Hysteresis, Springer-Verlag, Berlin, 1994 | MR | Zbl

[9] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996 | MR | Zbl

[10] I. D. Mayergoyz, Mathematical Models of Hysteresis and Their Applications, Elsevier, Amsterdam, 2003 | DOI

[11] V. V. Evstafeva, “O neobkhodimykh usloviyakh suschestvovaniya periodicheskikh reshenii v dinamicheskoi sisteme s razryvnoi nelineinostyu i vneshnim periodicheskim vozdeistviem”, Ufimsk. matem. zhurn., 3:2 (2011), 20–27 | Zbl

[12] V. V. Yevstafyeva, “Existence of the unique kT-periodic solution for one class of nonlinear systems”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 136–142 | Zbl

[13] A. Visintin, “Ten issues about hysteresis”, Acta Appl. Math., 132 (2014), 635–647 | DOI | MR | Zbl

[14] L. Fang, J. Wang, Q. Zhang, “Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model”, Nonlinear Dynam., 79:2 (2015), 1257–1273 | DOI | MR | Zbl

[15] V. V. Evstafeva, “Ob usloviyakh suschestvovaniya dvukhtochechno-kolebatelnogo periodicheskogo resheniya v neavtonomnoi releinoi sisteme s gurvitsevoi matritsei”, Avtomat. i telemekh., 2015, no. 6, 42–56

[16] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence”, Internat. J. Robust Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR | Zbl

[17] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence”, Electron. J. Differential Equations, 2017, Paper No. 140 | MR | Zbl

[18] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | MR | Zbl

[19] V. V. Evstafeva, “Periodicheskie resheniya sistemy differentsialnykh uravnenii s gisterezisnoi nelineinostyu pri nalichii nulevogo sobstvennogo chisla”, Ukr. matem. zhurn., 70:8 (2018), 1085–1096 | MR

[20] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic modes in automatic control system with a three-position relay”, Internat. J. Control, 93:4 (2020), 763–770 | DOI | MR | Zbl

[21] A. M. Kamachkin, G. M. Khitrov, V. N. Shamberov, “Normalnye formy matrits v zadachakh dekompozitsii i upravleniya mnogomernykh sistem”, Vestn. Sankt-Peterburgskogo un-ta. Prikl. matem. Inform. Prots. upr., 13:4 (2017), 417–430 | MR