Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 529-543

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of $n$th-order ordinary differential equations with relay nonlinearity and periodic perturbation function on the right-hand side is studied. The matrix of the system has real nonzero eigenvalues, among which there is at least one positive and one multiple eigenvalue. A nonsingular transformation that reduces the matrix of the system to Jordan form is used. Continuous periodic solutions with two switching points in the phase space of the system are considered. It is assumed that the period of the perturbation function is a multiple of the periods of these solutions. Necessary conditions for the existence of such solutions are established. An existence theorem for a solution of period equal to the period of the perturbation function is proved. A numerical example confirming the obtained results is presented.
Keywords: system of ordinary differential equations, relay nonlinearity with hysteresis, periodic perturbation function, multiple eigenvalue, canonical transformation, periodic solution, switching points, switching points.
Mots-clés : Jordan matrix
@article{MZM_2021_109_4_a3,
     author = {V. V. Yevstafyeva},
     title = {Existence of~$T/k${-Periodic} {Solutions} of a {Nonlinear} {Nonautonomous} {System} {Whose} {Matrix} {Has} a {Multiple} {Eigenvalue}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--543},
     publisher = {mathdoc},
     volume = {109},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/}
}
TY  - JOUR
AU  - V. V. Yevstafyeva
TI  - Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
JO  - Matematičeskie zametki
PY  - 2021
SP  - 529
EP  - 543
VL  - 109
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/
LA  - ru
ID  - MZM_2021_109_4_a3
ER  - 
%0 Journal Article
%A V. V. Yevstafyeva
%T Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue
%J Matematičeskie zametki
%D 2021
%P 529-543
%V 109
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/
%G ru
%F MZM_2021_109_4_a3
V. V. Yevstafyeva. Existence of~$T/k$-Periodic Solutions of a Nonlinear Nonautonomous System Whose Matrix Has a Multiple Eigenvalue. Matematičeskie zametki, Tome 109 (2021) no. 4, pp. 529-543. http://geodesic.mathdoc.fr/item/MZM_2021_109_4_a3/